Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ip1i.a |
|- A e. X |
7 |
|
ip1i.b |
|- B e. X |
8 |
|
ip1i.c |
|- C e. X |
9 |
|
ip1i.6 |
|- N = ( normCV ` U ) |
10 |
|
ip0i.j |
|- J e. CC |
11 |
5
|
phnvi |
|- U e. NrmCVec |
12 |
1 2 3 9 4
|
4ipval2 |
|- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( 4 x. ( A P C ) ) = ( ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) |
13 |
11 6 8 12
|
mp3an |
|- ( 4 x. ( A P C ) ) = ( ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) |
14 |
13
|
oveq2i |
|- ( 2 x. ( 4 x. ( A P C ) ) ) = ( 2 x. ( ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) |
15 |
|
2cn |
|- 2 e. CC |
16 |
|
4cn |
|- 4 e. CC |
17 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( A P C ) e. CC ) |
18 |
11 6 8 17
|
mp3an |
|- ( A P C ) e. CC |
19 |
15 16 18
|
mul12i |
|- ( 2 x. ( 4 x. ( A P C ) ) ) = ( 4 x. ( 2 x. ( A P C ) ) ) |
20 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( A G C ) e. X ) |
21 |
11 6 8 20
|
mp3an |
|- ( A G C ) e. X |
22 |
1 9 11 21
|
nvcli |
|- ( N ` ( A G C ) ) e. RR |
23 |
22
|
resqcli |
|- ( ( N ` ( A G C ) ) ^ 2 ) e. RR |
24 |
23
|
recni |
|- ( ( N ` ( A G C ) ) ^ 2 ) e. CC |
25 |
|
ax-1cn |
|- 1 e. CC |
26 |
25
|
negcli |
|- -u 1 e. CC |
27 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ C e. X ) -> ( -u 1 S C ) e. X ) |
28 |
11 26 8 27
|
mp3an |
|- ( -u 1 S C ) e. X |
29 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 S C ) e. X ) -> ( A G ( -u 1 S C ) ) e. X ) |
30 |
11 6 28 29
|
mp3an |
|- ( A G ( -u 1 S C ) ) e. X |
31 |
1 9 11 30
|
nvcli |
|- ( N ` ( A G ( -u 1 S C ) ) ) e. RR |
32 |
31
|
resqcli |
|- ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) e. RR |
33 |
32
|
recni |
|- ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) e. CC |
34 |
24 33
|
subcli |
|- ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) e. CC |
35 |
|
ax-icn |
|- _i e. CC |
36 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ _i e. CC /\ C e. X ) -> ( _i S C ) e. X ) |
37 |
11 35 8 36
|
mp3an |
|- ( _i S C ) e. X |
38 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ ( _i S C ) e. X ) -> ( A G ( _i S C ) ) e. X ) |
39 |
11 6 37 38
|
mp3an |
|- ( A G ( _i S C ) ) e. X |
40 |
1 9 11 39
|
nvcli |
|- ( N ` ( A G ( _i S C ) ) ) e. RR |
41 |
40
|
resqcli |
|- ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) e. RR |
42 |
41
|
recni |
|- ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) e. CC |
43 |
35
|
negcli |
|- -u _i e. CC |
44 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u _i e. CC /\ C e. X ) -> ( -u _i S C ) e. X ) |
45 |
11 43 8 44
|
mp3an |
|- ( -u _i S C ) e. X |
46 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ ( -u _i S C ) e. X ) -> ( A G ( -u _i S C ) ) e. X ) |
47 |
11 6 45 46
|
mp3an |
|- ( A G ( -u _i S C ) ) e. X |
48 |
1 9 11 47
|
nvcli |
|- ( N ` ( A G ( -u _i S C ) ) ) e. RR |
49 |
48
|
resqcli |
|- ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) e. RR |
50 |
49
|
recni |
|- ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) e. CC |
51 |
42 50
|
subcli |
|- ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) e. CC |
52 |
35 51
|
mulcli |
|- ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) e. CC |
53 |
15 34 52
|
adddii |
|- ( 2 x. ( ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) = ( ( 2 x. ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) ) + ( 2 x. ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) |
54 |
1 2 3 4 5 6 7 8 9 25
|
ip0i |
|- ( ( ( ( N ` ( ( A G B ) G ( 1 S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( 1 S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` ( A G ( 1 S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) ) |
55 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ C e. X ) -> ( 1 S C ) = C ) |
56 |
11 8 55
|
mp2an |
|- ( 1 S C ) = C |
57 |
56
|
oveq2i |
|- ( ( A G B ) G ( 1 S C ) ) = ( ( A G B ) G C ) |
58 |
57
|
fveq2i |
|- ( N ` ( ( A G B ) G ( 1 S C ) ) ) = ( N ` ( ( A G B ) G C ) ) |
59 |
58
|
oveq1i |
|- ( ( N ` ( ( A G B ) G ( 1 S C ) ) ) ^ 2 ) = ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) |
60 |
59
|
oveq1i |
|- ( ( ( N ` ( ( A G B ) G ( 1 S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) = ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) |
61 |
56
|
oveq2i |
|- ( ( A G ( -u 1 S B ) ) G ( 1 S C ) ) = ( ( A G ( -u 1 S B ) ) G C ) |
62 |
61
|
fveq2i |
|- ( N ` ( ( A G ( -u 1 S B ) ) G ( 1 S C ) ) ) = ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) |
63 |
62
|
oveq1i |
|- ( ( N ` ( ( A G ( -u 1 S B ) ) G ( 1 S C ) ) ) ^ 2 ) = ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) |
64 |
63
|
oveq1i |
|- ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( 1 S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) = ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) |
65 |
60 64
|
oveq12i |
|- ( ( ( ( N ` ( ( A G B ) G ( 1 S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( 1 S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) ) = ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) ) |
66 |
56
|
oveq2i |
|- ( A G ( 1 S C ) ) = ( A G C ) |
67 |
66
|
fveq2i |
|- ( N ` ( A G ( 1 S C ) ) ) = ( N ` ( A G C ) ) |
68 |
67
|
oveq1i |
|- ( ( N ` ( A G ( 1 S C ) ) ) ^ 2 ) = ( ( N ` ( A G C ) ) ^ 2 ) |
69 |
68
|
oveq1i |
|- ( ( ( N ` ( A G ( 1 S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) = ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) |
70 |
69
|
oveq2i |
|- ( 2 x. ( ( ( N ` ( A G ( 1 S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) ) |
71 |
54 65 70
|
3eqtr3i |
|- ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) ) |
72 |
1 2 3 4 5 6 7 8 9 35
|
ip0i |
|- ( ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) |
73 |
72
|
oveq2i |
|- ( _i x. ( ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) = ( _i x. ( 2 x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) |
74 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
75 |
11 6 7 74
|
mp3an |
|- ( A G B ) e. X |
76 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ ( _i S C ) e. X ) -> ( ( A G B ) G ( _i S C ) ) e. X ) |
77 |
11 75 37 76
|
mp3an |
|- ( ( A G B ) G ( _i S C ) ) e. X |
78 |
1 9 11 77
|
nvcli |
|- ( N ` ( ( A G B ) G ( _i S C ) ) ) e. RR |
79 |
78
|
resqcli |
|- ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) e. RR |
80 |
79
|
recni |
|- ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) e. CC |
81 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ ( -u _i S C ) e. X ) -> ( ( A G B ) G ( -u _i S C ) ) e. X ) |
82 |
11 75 45 81
|
mp3an |
|- ( ( A G B ) G ( -u _i S C ) ) e. X |
83 |
1 9 11 82
|
nvcli |
|- ( N ` ( ( A G B ) G ( -u _i S C ) ) ) e. RR |
84 |
83
|
resqcli |
|- ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) e. RR |
85 |
84
|
recni |
|- ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) e. CC |
86 |
80 85
|
subcli |
|- ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) e. CC |
87 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 S B ) e. X ) |
88 |
11 26 7 87
|
mp3an |
|- ( -u 1 S B ) e. X |
89 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 S B ) e. X ) -> ( A G ( -u 1 S B ) ) e. X ) |
90 |
11 6 88 89
|
mp3an |
|- ( A G ( -u 1 S B ) ) e. X |
91 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( A G ( -u 1 S B ) ) e. X /\ ( _i S C ) e. X ) -> ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) e. X ) |
92 |
11 90 37 91
|
mp3an |
|- ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) e. X |
93 |
1 9 11 92
|
nvcli |
|- ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) e. RR |
94 |
93
|
resqcli |
|- ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) e. RR |
95 |
94
|
recni |
|- ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) e. CC |
96 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( A G ( -u 1 S B ) ) e. X /\ ( -u _i S C ) e. X ) -> ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) e. X ) |
97 |
11 90 45 96
|
mp3an |
|- ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) e. X |
98 |
1 9 11 97
|
nvcli |
|- ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) e. RR |
99 |
98
|
resqcli |
|- ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) e. RR |
100 |
99
|
recni |
|- ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) e. CC |
101 |
95 100
|
subcli |
|- ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) e. CC |
102 |
35 86 101
|
adddii |
|- ( _i x. ( ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) = ( ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) |
103 |
35 15 51
|
mul12i |
|- ( _i x. ( 2 x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) = ( 2 x. ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) |
104 |
73 102 103
|
3eqtr3i |
|- ( ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) = ( 2 x. ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) |
105 |
71 104
|
oveq12i |
|- ( ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) ) + ( ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) = ( ( 2 x. ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) ) + ( 2 x. ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) |
106 |
53 105
|
eqtr4i |
|- ( 2 x. ( ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) = ( ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) ) + ( ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) |
107 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ C e. X ) -> ( ( A G B ) G C ) e. X ) |
108 |
11 75 8 107
|
mp3an |
|- ( ( A G B ) G C ) e. X |
109 |
1 9 11 108
|
nvcli |
|- ( N ` ( ( A G B ) G C ) ) e. RR |
110 |
109
|
resqcli |
|- ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) e. RR |
111 |
110
|
recni |
|- ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) e. CC |
112 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ ( -u 1 S C ) e. X ) -> ( ( A G B ) G ( -u 1 S C ) ) e. X ) |
113 |
11 75 28 112
|
mp3an |
|- ( ( A G B ) G ( -u 1 S C ) ) e. X |
114 |
1 9 11 113
|
nvcli |
|- ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) e. RR |
115 |
114
|
resqcli |
|- ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) e. RR |
116 |
115
|
recni |
|- ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) e. CC |
117 |
111 116
|
subcli |
|- ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) e. CC |
118 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( A G ( -u 1 S B ) ) e. X /\ C e. X ) -> ( ( A G ( -u 1 S B ) ) G C ) e. X ) |
119 |
11 90 8 118
|
mp3an |
|- ( ( A G ( -u 1 S B ) ) G C ) e. X |
120 |
1 9 11 119
|
nvcli |
|- ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) e. RR |
121 |
120
|
resqcli |
|- ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) e. RR |
122 |
121
|
recni |
|- ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) e. CC |
123 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( A G ( -u 1 S B ) ) e. X /\ ( -u 1 S C ) e. X ) -> ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) e. X ) |
124 |
11 90 28 123
|
mp3an |
|- ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) e. X |
125 |
1 9 11 124
|
nvcli |
|- ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) e. RR |
126 |
125
|
resqcli |
|- ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) e. RR |
127 |
126
|
recni |
|- ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) e. CC |
128 |
122 127
|
subcli |
|- ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) e. CC |
129 |
35 86
|
mulcli |
|- ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) e. CC |
130 |
35 101
|
mulcli |
|- ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) e. CC |
131 |
117 128 129 130
|
add4i |
|- ( ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) ) + ( ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) = ( ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) + ( ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) |
132 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ C e. X ) -> ( ( A G B ) P C ) e. CC ) |
133 |
11 75 8 132
|
mp3an |
|- ( ( A G B ) P C ) e. CC |
134 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ ( A G ( -u 1 S B ) ) e. X /\ C e. X ) -> ( ( A G ( -u 1 S B ) ) P C ) e. CC ) |
135 |
11 90 8 134
|
mp3an |
|- ( ( A G ( -u 1 S B ) ) P C ) e. CC |
136 |
16 133 135
|
adddii |
|- ( 4 x. ( ( ( A G B ) P C ) + ( ( A G ( -u 1 S B ) ) P C ) ) ) = ( ( 4 x. ( ( A G B ) P C ) ) + ( 4 x. ( ( A G ( -u 1 S B ) ) P C ) ) ) |
137 |
1 2 3 9 4
|
4ipval2 |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ C e. X ) -> ( 4 x. ( ( A G B ) P C ) ) = ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) |
138 |
11 75 8 137
|
mp3an |
|- ( 4 x. ( ( A G B ) P C ) ) = ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) |
139 |
1 2 3 9 4
|
4ipval2 |
|- ( ( U e. NrmCVec /\ ( A G ( -u 1 S B ) ) e. X /\ C e. X ) -> ( 4 x. ( ( A G ( -u 1 S B ) ) P C ) ) = ( ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) |
140 |
11 90 8 139
|
mp3an |
|- ( 4 x. ( ( A G ( -u 1 S B ) ) P C ) ) = ( ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) |
141 |
138 140
|
oveq12i |
|- ( ( 4 x. ( ( A G B ) P C ) ) + ( 4 x. ( ( A G ( -u 1 S B ) ) P C ) ) ) = ( ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) + ( ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) |
142 |
136 141
|
eqtr2i |
|- ( ( ( ( ( N ` ( ( A G B ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G B ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) + ( ( ( ( N ` ( ( A G ( -u 1 S B ) ) G C ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) = ( 4 x. ( ( ( A G B ) P C ) + ( ( A G ( -u 1 S B ) ) P C ) ) ) |
143 |
106 131 142
|
3eqtri |
|- ( 2 x. ( ( ( ( N ` ( A G C ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S C ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S C ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) ) = ( 4 x. ( ( ( A G B ) P C ) + ( ( A G ( -u 1 S B ) ) P C ) ) ) |
144 |
14 19 143
|
3eqtr3ri |
|- ( 4 x. ( ( ( A G B ) P C ) + ( ( A G ( -u 1 S B ) ) P C ) ) ) = ( 4 x. ( 2 x. ( A P C ) ) ) |
145 |
144
|
oveq1i |
|- ( ( 4 x. ( ( ( A G B ) P C ) + ( ( A G ( -u 1 S B ) ) P C ) ) ) / 4 ) = ( ( 4 x. ( 2 x. ( A P C ) ) ) / 4 ) |
146 |
133 135
|
addcli |
|- ( ( ( A G B ) P C ) + ( ( A G ( -u 1 S B ) ) P C ) ) e. CC |
147 |
|
4ne0 |
|- 4 =/= 0 |
148 |
146 16 147
|
divcan3i |
|- ( ( 4 x. ( ( ( A G B ) P C ) + ( ( A G ( -u 1 S B ) ) P C ) ) ) / 4 ) = ( ( ( A G B ) P C ) + ( ( A G ( -u 1 S B ) ) P C ) ) |
149 |
15 18
|
mulcli |
|- ( 2 x. ( A P C ) ) e. CC |
150 |
149 16 147
|
divcan3i |
|- ( ( 4 x. ( 2 x. ( A P C ) ) ) / 4 ) = ( 2 x. ( A P C ) ) |
151 |
145 148 150
|
3eqtr3i |
|- ( ( ( A G B ) P C ) + ( ( A G ( -u 1 S B ) ) P C ) ) = ( 2 x. ( A P C ) ) |