Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
4 |
|
ipdir.g |
|- .+ = ( +g ` W ) |
5 |
|
ipdir.p |
|- .+^ = ( +g ` F ) |
6 |
|
ip2di.1 |
|- ( ph -> W e. PreHil ) |
7 |
|
ip2di.2 |
|- ( ph -> A e. V ) |
8 |
|
ip2di.3 |
|- ( ph -> B e. V ) |
9 |
|
ip2di.4 |
|- ( ph -> C e. V ) |
10 |
|
ip2di.5 |
|- ( ph -> D e. V ) |
11 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
12 |
6 11
|
syl |
|- ( ph -> W e. LMod ) |
13 |
3 4
|
lmodvacl |
|- ( ( W e. LMod /\ C e. V /\ D e. V ) -> ( C .+ D ) e. V ) |
14 |
12 9 10 13
|
syl3anc |
|- ( ph -> ( C .+ D ) e. V ) |
15 |
1 2 3 4 5
|
ipdir |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ ( C .+ D ) e. V ) ) -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( A ., ( C .+ D ) ) .+^ ( B ., ( C .+ D ) ) ) ) |
16 |
6 7 8 14 15
|
syl13anc |
|- ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( A ., ( C .+ D ) ) .+^ ( B ., ( C .+ D ) ) ) ) |
17 |
1 2 3 4 5
|
ipdi |
|- ( ( W e. PreHil /\ ( A e. V /\ C e. V /\ D e. V ) ) -> ( A ., ( C .+ D ) ) = ( ( A ., C ) .+^ ( A ., D ) ) ) |
18 |
6 7 9 10 17
|
syl13anc |
|- ( ph -> ( A ., ( C .+ D ) ) = ( ( A ., C ) .+^ ( A ., D ) ) ) |
19 |
1 2 3 4 5
|
ipdi |
|- ( ( W e. PreHil /\ ( B e. V /\ C e. V /\ D e. V ) ) -> ( B ., ( C .+ D ) ) = ( ( B ., C ) .+^ ( B ., D ) ) ) |
20 |
6 8 9 10 19
|
syl13anc |
|- ( ph -> ( B ., ( C .+ D ) ) = ( ( B ., C ) .+^ ( B ., D ) ) ) |
21 |
1
|
phlsrng |
|- ( W e. PreHil -> F e. *Ring ) |
22 |
|
srngring |
|- ( F e. *Ring -> F e. Ring ) |
23 |
|
ringcmn |
|- ( F e. Ring -> F e. CMnd ) |
24 |
6 21 22 23
|
4syl |
|- ( ph -> F e. CMnd ) |
25 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
26 |
1 2 3 25
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. ( Base ` F ) ) |
27 |
6 8 9 26
|
syl3anc |
|- ( ph -> ( B ., C ) e. ( Base ` F ) ) |
28 |
1 2 3 25
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ D e. V ) -> ( B ., D ) e. ( Base ` F ) ) |
29 |
6 8 10 28
|
syl3anc |
|- ( ph -> ( B ., D ) e. ( Base ` F ) ) |
30 |
25 5
|
cmncom |
|- ( ( F e. CMnd /\ ( B ., C ) e. ( Base ` F ) /\ ( B ., D ) e. ( Base ` F ) ) -> ( ( B ., C ) .+^ ( B ., D ) ) = ( ( B ., D ) .+^ ( B ., C ) ) ) |
31 |
24 27 29 30
|
syl3anc |
|- ( ph -> ( ( B ., C ) .+^ ( B ., D ) ) = ( ( B ., D ) .+^ ( B ., C ) ) ) |
32 |
20 31
|
eqtrd |
|- ( ph -> ( B ., ( C .+ D ) ) = ( ( B ., D ) .+^ ( B ., C ) ) ) |
33 |
18 32
|
oveq12d |
|- ( ph -> ( ( A ., ( C .+ D ) ) .+^ ( B ., ( C .+ D ) ) ) = ( ( ( A ., C ) .+^ ( A ., D ) ) .+^ ( ( B ., D ) .+^ ( B ., C ) ) ) ) |
34 |
1 2 3 25
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` F ) ) |
35 |
6 7 9 34
|
syl3anc |
|- ( ph -> ( A ., C ) e. ( Base ` F ) ) |
36 |
1 2 3 25
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ D e. V ) -> ( A ., D ) e. ( Base ` F ) ) |
37 |
6 7 10 36
|
syl3anc |
|- ( ph -> ( A ., D ) e. ( Base ` F ) ) |
38 |
25 5
|
cmn4 |
|- ( ( F e. CMnd /\ ( ( A ., C ) e. ( Base ` F ) /\ ( A ., D ) e. ( Base ` F ) ) /\ ( ( B ., D ) e. ( Base ` F ) /\ ( B ., C ) e. ( Base ` F ) ) ) -> ( ( ( A ., C ) .+^ ( A ., D ) ) .+^ ( ( B ., D ) .+^ ( B ., C ) ) ) = ( ( ( A ., C ) .+^ ( B ., D ) ) .+^ ( ( A ., D ) .+^ ( B ., C ) ) ) ) |
39 |
24 35 37 29 27 38
|
syl122anc |
|- ( ph -> ( ( ( A ., C ) .+^ ( A ., D ) ) .+^ ( ( B ., D ) .+^ ( B ., C ) ) ) = ( ( ( A ., C ) .+^ ( B ., D ) ) .+^ ( ( A ., D ) .+^ ( B ., C ) ) ) ) |
40 |
16 33 39
|
3eqtrd |
|- ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) .+^ ( B ., D ) ) .+^ ( ( A ., D ) .+^ ( B ., C ) ) ) ) |