Step |
Hyp |
Ref |
Expression |
1 |
|
ip2dii.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip2dii.2 |
|- G = ( +v ` U ) |
3 |
|
ip2dii.7 |
|- P = ( .iOLD ` U ) |
4 |
|
ip2dii.u |
|- U e. CPreHilOLD |
5 |
|
ip2dii.a |
|- A e. X |
6 |
|
ip2dii.b |
|- B e. X |
7 |
|
ip2dii.c |
|- C e. X |
8 |
|
ip2dii.d |
|- D e. X |
9 |
5 7 8
|
3pm3.2i |
|- ( A e. X /\ C e. X /\ D e. X ) |
10 |
1 2 3
|
dipdi |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ C e. X /\ D e. X ) ) -> ( A P ( C G D ) ) = ( ( A P C ) + ( A P D ) ) ) |
11 |
4 9 10
|
mp2an |
|- ( A P ( C G D ) ) = ( ( A P C ) + ( A P D ) ) |
12 |
6 7 8
|
3pm3.2i |
|- ( B e. X /\ C e. X /\ D e. X ) |
13 |
1 2 3
|
dipdi |
|- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X /\ D e. X ) ) -> ( B P ( C G D ) ) = ( ( B P C ) + ( B P D ) ) ) |
14 |
4 12 13
|
mp2an |
|- ( B P ( C G D ) ) = ( ( B P C ) + ( B P D ) ) |
15 |
11 14
|
oveq12i |
|- ( ( A P ( C G D ) ) + ( B P ( C G D ) ) ) = ( ( ( A P C ) + ( A P D ) ) + ( ( B P C ) + ( B P D ) ) ) |
16 |
4
|
phnvi |
|- U e. NrmCVec |
17 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ C e. X /\ D e. X ) -> ( C G D ) e. X ) |
18 |
16 7 8 17
|
mp3an |
|- ( C G D ) e. X |
19 |
5 6 18
|
3pm3.2i |
|- ( A e. X /\ B e. X /\ ( C G D ) e. X ) |
20 |
1 2 3
|
dipdir |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ ( C G D ) e. X ) ) -> ( ( A G B ) P ( C G D ) ) = ( ( A P ( C G D ) ) + ( B P ( C G D ) ) ) ) |
21 |
4 19 20
|
mp2an |
|- ( ( A G B ) P ( C G D ) ) = ( ( A P ( C G D ) ) + ( B P ( C G D ) ) ) |
22 |
1 3
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( A P C ) e. CC ) |
23 |
16 5 7 22
|
mp3an |
|- ( A P C ) e. CC |
24 |
1 3
|
dipcl |
|- ( ( U e. NrmCVec /\ B e. X /\ D e. X ) -> ( B P D ) e. CC ) |
25 |
16 6 8 24
|
mp3an |
|- ( B P D ) e. CC |
26 |
1 3
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ D e. X ) -> ( A P D ) e. CC ) |
27 |
16 5 8 26
|
mp3an |
|- ( A P D ) e. CC |
28 |
1 3
|
dipcl |
|- ( ( U e. NrmCVec /\ B e. X /\ C e. X ) -> ( B P C ) e. CC ) |
29 |
16 6 7 28
|
mp3an |
|- ( B P C ) e. CC |
30 |
23 25 27 29
|
add42i |
|- ( ( ( A P C ) + ( B P D ) ) + ( ( A P D ) + ( B P C ) ) ) = ( ( ( A P C ) + ( A P D ) ) + ( ( B P C ) + ( B P D ) ) ) |
31 |
15 21 30
|
3eqtr4i |
|- ( ( A G B ) P ( C G D ) ) = ( ( ( A P C ) + ( B P D ) ) + ( ( A P D ) + ( B P C ) ) ) |