| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ip2eqi.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
ip2eqi.7 |
|- P = ( .iOLD ` U ) |
| 3 |
|
ip2eqi.u |
|- U e. CPreHilOLD |
| 4 |
3
|
phnvi |
|- U e. NrmCVec |
| 5 |
|
eqid |
|- ( -v ` U ) = ( -v ` U ) |
| 6 |
1 5
|
nvmcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A ( -v ` U ) B ) e. X ) |
| 7 |
4 6
|
mp3an1 |
|- ( ( A e. X /\ B e. X ) -> ( A ( -v ` U ) B ) e. X ) |
| 8 |
|
oveq1 |
|- ( x = ( A ( -v ` U ) B ) -> ( x P A ) = ( ( A ( -v ` U ) B ) P A ) ) |
| 9 |
|
oveq1 |
|- ( x = ( A ( -v ` U ) B ) -> ( x P B ) = ( ( A ( -v ` U ) B ) P B ) ) |
| 10 |
8 9
|
eqeq12d |
|- ( x = ( A ( -v ` U ) B ) -> ( ( x P A ) = ( x P B ) <-> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) |
| 11 |
10
|
rspcv |
|- ( ( A ( -v ` U ) B ) e. X -> ( A. x e. X ( x P A ) = ( x P B ) -> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) |
| 12 |
7 11
|
syl |
|- ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) -> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) |
| 13 |
|
simpl |
|- ( ( A e. X /\ B e. X ) -> A e. X ) |
| 14 |
|
simpr |
|- ( ( A e. X /\ B e. X ) -> B e. X ) |
| 15 |
1 5 2
|
dipsubdi |
|- ( ( U e. CPreHilOLD /\ ( ( A ( -v ` U ) B ) e. X /\ A e. X /\ B e. X ) ) -> ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) ) |
| 16 |
3 15
|
mpan |
|- ( ( ( A ( -v ` U ) B ) e. X /\ A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) ) |
| 17 |
7 13 14 16
|
syl3anc |
|- ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) ) |
| 18 |
17
|
eqeq1d |
|- ( ( A e. X /\ B e. X ) -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) = 0 ) ) |
| 19 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
| 20 |
1 19 2
|
ipz |
|- ( ( U e. NrmCVec /\ ( A ( -v ` U ) B ) e. X ) -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) |
| 21 |
4 20
|
mpan |
|- ( ( A ( -v ` U ) B ) e. X -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) |
| 22 |
7 21
|
syl |
|- ( ( A e. X /\ B e. X ) -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) |
| 23 |
18 22
|
bitr3d |
|- ( ( A e. X /\ B e. X ) -> ( ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) |
| 24 |
1 2
|
dipcl |
|- ( ( U e. NrmCVec /\ ( A ( -v ` U ) B ) e. X /\ A e. X ) -> ( ( A ( -v ` U ) B ) P A ) e. CC ) |
| 25 |
4 24
|
mp3an1 |
|- ( ( ( A ( -v ` U ) B ) e. X /\ A e. X ) -> ( ( A ( -v ` U ) B ) P A ) e. CC ) |
| 26 |
7 13 25
|
syl2anc |
|- ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P A ) e. CC ) |
| 27 |
1 2
|
dipcl |
|- ( ( U e. NrmCVec /\ ( A ( -v ` U ) B ) e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P B ) e. CC ) |
| 28 |
4 27
|
mp3an1 |
|- ( ( ( A ( -v ` U ) B ) e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P B ) e. CC ) |
| 29 |
7 28
|
sylancom |
|- ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P B ) e. CC ) |
| 30 |
26 29
|
subeq0ad |
|- ( ( A e. X /\ B e. X ) -> ( ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) = 0 <-> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) |
| 31 |
1 5 19
|
nvmeq0 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) = ( 0vec ` U ) <-> A = B ) ) |
| 32 |
4 31
|
mp3an1 |
|- ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) = ( 0vec ` U ) <-> A = B ) ) |
| 33 |
23 30 32
|
3bitr3d |
|- ( ( A e. X /\ B e. X ) -> ( ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) <-> A = B ) ) |
| 34 |
12 33
|
sylibd |
|- ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) -> A = B ) ) |
| 35 |
|
oveq2 |
|- ( A = B -> ( x P A ) = ( x P B ) ) |
| 36 |
35
|
ralrimivw |
|- ( A = B -> A. x e. X ( x P A ) = ( x P B ) ) |
| 37 |
34 36
|
impbid1 |
|- ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) <-> A = B ) ) |