Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ip2i.8 |
|- A e. X |
7 |
|
ip2i.9 |
|- B e. X |
8 |
5
|
phnvi |
|- U e. NrmCVec |
9 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( A G A ) e. X ) |
10 |
8 6 6 9
|
mp3an |
|- ( A G A ) e. X |
11 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ ( A G A ) e. X /\ B e. X ) -> ( ( A G A ) P B ) e. CC ) |
12 |
8 10 7 11
|
mp3an |
|- ( ( A G A ) P B ) e. CC |
13 |
12
|
addid1i |
|- ( ( ( A G A ) P B ) + 0 ) = ( ( A G A ) P B ) |
14 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
15 |
1 2 3 14
|
nvrinv |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = ( 0vec ` U ) ) |
16 |
8 6 15
|
mp2an |
|- ( A G ( -u 1 S A ) ) = ( 0vec ` U ) |
17 |
16
|
oveq1i |
|- ( ( A G ( -u 1 S A ) ) P B ) = ( ( 0vec ` U ) P B ) |
18 |
1 14 4
|
dip0l |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( ( 0vec ` U ) P B ) = 0 ) |
19 |
8 7 18
|
mp2an |
|- ( ( 0vec ` U ) P B ) = 0 |
20 |
17 19
|
eqtri |
|- ( ( A G ( -u 1 S A ) ) P B ) = 0 |
21 |
20
|
oveq2i |
|- ( ( ( A G A ) P B ) + ( ( A G ( -u 1 S A ) ) P B ) ) = ( ( ( A G A ) P B ) + 0 ) |
22 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
23 |
22
|
oveq1i |
|- ( 2 S A ) = ( ( 1 + 1 ) S A ) |
24 |
|
ax-1cn |
|- 1 e. CC |
25 |
24 24 6
|
3pm3.2i |
|- ( 1 e. CC /\ 1 e. CC /\ A e. X ) |
26 |
1 2 3
|
nvdir |
|- ( ( U e. NrmCVec /\ ( 1 e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) |
27 |
8 25 26
|
mp2an |
|- ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) |
28 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
29 |
8 6 28
|
mp2an |
|- ( 1 S A ) = A |
30 |
29 29
|
oveq12i |
|- ( ( 1 S A ) G ( 1 S A ) ) = ( A G A ) |
31 |
27 30
|
eqtri |
|- ( ( 1 + 1 ) S A ) = ( A G A ) |
32 |
23 31
|
eqtri |
|- ( 2 S A ) = ( A G A ) |
33 |
32
|
oveq1i |
|- ( ( 2 S A ) P B ) = ( ( A G A ) P B ) |
34 |
13 21 33
|
3eqtr4ri |
|- ( ( 2 S A ) P B ) = ( ( ( A G A ) P B ) + ( ( A G ( -u 1 S A ) ) P B ) ) |
35 |
1 2 3 4 5 6 6 7
|
ip1i |
|- ( ( ( A G A ) P B ) + ( ( A G ( -u 1 S A ) ) P B ) ) = ( 2 x. ( A P B ) ) |
36 |
34 35
|
eqtri |
|- ( ( 2 S A ) P B ) = ( 2 x. ( A P B ) ) |