Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
4 |
|
ipsubdir.m |
|- .- = ( -g ` W ) |
5 |
|
ipsubdir.s |
|- S = ( -g ` F ) |
6 |
|
ip2subdi.p |
|- .+ = ( +g ` F ) |
7 |
|
ip2subdi.1 |
|- ( ph -> W e. PreHil ) |
8 |
|
ip2subdi.2 |
|- ( ph -> A e. V ) |
9 |
|
ip2subdi.3 |
|- ( ph -> B e. V ) |
10 |
|
ip2subdi.4 |
|- ( ph -> C e. V ) |
11 |
|
ip2subdi.5 |
|- ( ph -> D e. V ) |
12 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
13 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
14 |
7 13
|
syl |
|- ( ph -> W e. LMod ) |
15 |
1
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
16 |
14 15
|
syl |
|- ( ph -> F e. Ring ) |
17 |
|
ringabl |
|- ( F e. Ring -> F e. Abel ) |
18 |
16 17
|
syl |
|- ( ph -> F e. Abel ) |
19 |
1 2 3 12
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` F ) ) |
20 |
7 8 10 19
|
syl3anc |
|- ( ph -> ( A ., C ) e. ( Base ` F ) ) |
21 |
1 2 3 12
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ D e. V ) -> ( A ., D ) e. ( Base ` F ) ) |
22 |
7 8 11 21
|
syl3anc |
|- ( ph -> ( A ., D ) e. ( Base ` F ) ) |
23 |
1 2 3 12
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. ( Base ` F ) ) |
24 |
7 9 10 23
|
syl3anc |
|- ( ph -> ( B ., C ) e. ( Base ` F ) ) |
25 |
12 6 5 18 20 22 24
|
ablsubsub4 |
|- ( ph -> ( ( ( A ., C ) S ( A ., D ) ) S ( B ., C ) ) = ( ( A ., C ) S ( ( A ., D ) .+ ( B ., C ) ) ) ) |
26 |
25
|
oveq1d |
|- ( ph -> ( ( ( ( A ., C ) S ( A ., D ) ) S ( B ., C ) ) .+ ( B ., D ) ) = ( ( ( A ., C ) S ( ( A ., D ) .+ ( B ., C ) ) ) .+ ( B ., D ) ) ) |
27 |
3 4
|
lmodvsubcl |
|- ( ( W e. LMod /\ C e. V /\ D e. V ) -> ( C .- D ) e. V ) |
28 |
14 10 11 27
|
syl3anc |
|- ( ph -> ( C .- D ) e. V ) |
29 |
1 2 3 4 5
|
ipsubdir |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ ( C .- D ) e. V ) ) -> ( ( A .- B ) ., ( C .- D ) ) = ( ( A ., ( C .- D ) ) S ( B ., ( C .- D ) ) ) ) |
30 |
7 8 9 28 29
|
syl13anc |
|- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( A ., ( C .- D ) ) S ( B ., ( C .- D ) ) ) ) |
31 |
1 2 3 4 5
|
ipsubdi |
|- ( ( W e. PreHil /\ ( A e. V /\ C e. V /\ D e. V ) ) -> ( A ., ( C .- D ) ) = ( ( A ., C ) S ( A ., D ) ) ) |
32 |
7 8 10 11 31
|
syl13anc |
|- ( ph -> ( A ., ( C .- D ) ) = ( ( A ., C ) S ( A ., D ) ) ) |
33 |
1 2 3 4 5
|
ipsubdi |
|- ( ( W e. PreHil /\ ( B e. V /\ C e. V /\ D e. V ) ) -> ( B ., ( C .- D ) ) = ( ( B ., C ) S ( B ., D ) ) ) |
34 |
7 9 10 11 33
|
syl13anc |
|- ( ph -> ( B ., ( C .- D ) ) = ( ( B ., C ) S ( B ., D ) ) ) |
35 |
32 34
|
oveq12d |
|- ( ph -> ( ( A ., ( C .- D ) ) S ( B ., ( C .- D ) ) ) = ( ( ( A ., C ) S ( A ., D ) ) S ( ( B ., C ) S ( B ., D ) ) ) ) |
36 |
|
ringgrp |
|- ( F e. Ring -> F e. Grp ) |
37 |
16 36
|
syl |
|- ( ph -> F e. Grp ) |
38 |
12 5
|
grpsubcl |
|- ( ( F e. Grp /\ ( A ., C ) e. ( Base ` F ) /\ ( A ., D ) e. ( Base ` F ) ) -> ( ( A ., C ) S ( A ., D ) ) e. ( Base ` F ) ) |
39 |
37 20 22 38
|
syl3anc |
|- ( ph -> ( ( A ., C ) S ( A ., D ) ) e. ( Base ` F ) ) |
40 |
1 2 3 12
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ D e. V ) -> ( B ., D ) e. ( Base ` F ) ) |
41 |
7 9 11 40
|
syl3anc |
|- ( ph -> ( B ., D ) e. ( Base ` F ) ) |
42 |
12 6 5 18 39 24 41
|
ablsubsub |
|- ( ph -> ( ( ( A ., C ) S ( A ., D ) ) S ( ( B ., C ) S ( B ., D ) ) ) = ( ( ( ( A ., C ) S ( A ., D ) ) S ( B ., C ) ) .+ ( B ., D ) ) ) |
43 |
30 35 42
|
3eqtrd |
|- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( ( A ., C ) S ( A ., D ) ) S ( B ., C ) ) .+ ( B ., D ) ) ) |
44 |
12 6
|
ringacl |
|- ( ( F e. Ring /\ ( A ., D ) e. ( Base ` F ) /\ ( B ., C ) e. ( Base ` F ) ) -> ( ( A ., D ) .+ ( B ., C ) ) e. ( Base ` F ) ) |
45 |
16 22 24 44
|
syl3anc |
|- ( ph -> ( ( A ., D ) .+ ( B ., C ) ) e. ( Base ` F ) ) |
46 |
12 6 5
|
abladdsub |
|- ( ( F e. Abel /\ ( ( A ., C ) e. ( Base ` F ) /\ ( B ., D ) e. ( Base ` F ) /\ ( ( A ., D ) .+ ( B ., C ) ) e. ( Base ` F ) ) ) -> ( ( ( A ., C ) .+ ( B ., D ) ) S ( ( A ., D ) .+ ( B ., C ) ) ) = ( ( ( A ., C ) S ( ( A ., D ) .+ ( B ., C ) ) ) .+ ( B ., D ) ) ) |
47 |
18 20 41 45 46
|
syl13anc |
|- ( ph -> ( ( ( A ., C ) .+ ( B ., D ) ) S ( ( A ., D ) .+ ( B ., C ) ) ) = ( ( ( A ., C ) S ( ( A ., D ) .+ ( B ., C ) ) ) .+ ( B ., D ) ) ) |
48 |
26 43 47
|
3eqtr4d |
|- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( A ., C ) .+ ( B ., D ) ) S ( ( A ., D ) .+ ( B ., C ) ) ) ) |