| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | phllmhm.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | phllmhm.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | ipdir.f |  |-  K = ( Base ` F ) | 
						
							| 5 |  | ipass.s |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | ipass.p |  |-  .X. = ( .r ` F ) | 
						
							| 7 |  | eqid |  |-  ( x e. V |-> ( x ., C ) ) = ( x e. V |-> ( x ., C ) ) | 
						
							| 8 | 1 2 3 7 | phllmhm |  |-  ( ( W e. PreHil /\ C e. V ) -> ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) ) | 
						
							| 9 | 8 | 3ad2antr3 |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) ) | 
						
							| 10 |  | simpr1 |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> A e. K ) | 
						
							| 11 |  | simpr2 |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> B e. V ) | 
						
							| 12 |  | rlmvsca |  |-  ( .r ` F ) = ( .s ` ( ringLMod ` F ) ) | 
						
							| 13 | 6 12 | eqtri |  |-  .X. = ( .s ` ( ringLMod ` F ) ) | 
						
							| 14 | 1 4 3 5 13 | lmhmlin |  |-  ( ( ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ A e. K /\ B e. V ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( A .X. ( ( x e. V |-> ( x ., C ) ) ` B ) ) ) | 
						
							| 15 | 9 10 11 14 | syl3anc |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( A .X. ( ( x e. V |-> ( x ., C ) ) ` B ) ) ) | 
						
							| 16 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 17 | 16 | adantr |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> W e. LMod ) | 
						
							| 18 | 3 1 5 4 | lmodvscl |  |-  ( ( W e. LMod /\ A e. K /\ B e. V ) -> ( A .x. B ) e. V ) | 
						
							| 19 | 17 10 11 18 | syl3anc |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( A .x. B ) e. V ) | 
						
							| 20 |  | oveq1 |  |-  ( x = ( A .x. B ) -> ( x ., C ) = ( ( A .x. B ) ., C ) ) | 
						
							| 21 |  | ovex |  |-  ( x ., C ) e. _V | 
						
							| 22 | 20 7 21 | fvmpt3i |  |-  ( ( A .x. B ) e. V -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( ( A .x. B ) ., C ) ) | 
						
							| 23 | 19 22 | syl |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( ( A .x. B ) ., C ) ) | 
						
							| 24 |  | oveq1 |  |-  ( x = B -> ( x ., C ) = ( B ., C ) ) | 
						
							| 25 | 24 7 21 | fvmpt3i |  |-  ( B e. V -> ( ( x e. V |-> ( x ., C ) ) ` B ) = ( B ., C ) ) | 
						
							| 26 | 11 25 | syl |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` B ) = ( B ., C ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( A .X. ( ( x e. V |-> ( x ., C ) ) ` B ) ) = ( A .X. ( B ., C ) ) ) | 
						
							| 28 | 15 23 27 | 3eqtr3d |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A .X. ( B ., C ) ) ) |