Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
4 |
|
ipdir.f |
|- K = ( Base ` F ) |
5 |
|
ipass.s |
|- .x. = ( .s ` W ) |
6 |
|
ipass.p |
|- .X. = ( .r ` F ) |
7 |
|
eqid |
|- ( x e. V |-> ( x ., C ) ) = ( x e. V |-> ( x ., C ) ) |
8 |
1 2 3 7
|
phllmhm |
|- ( ( W e. PreHil /\ C e. V ) -> ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
9 |
8
|
3ad2antr3 |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
10 |
|
simpr1 |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> A e. K ) |
11 |
|
simpr2 |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> B e. V ) |
12 |
|
rlmvsca |
|- ( .r ` F ) = ( .s ` ( ringLMod ` F ) ) |
13 |
6 12
|
eqtri |
|- .X. = ( .s ` ( ringLMod ` F ) ) |
14 |
1 4 3 5 13
|
lmhmlin |
|- ( ( ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ A e. K /\ B e. V ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( A .X. ( ( x e. V |-> ( x ., C ) ) ` B ) ) ) |
15 |
9 10 11 14
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( A .X. ( ( x e. V |-> ( x ., C ) ) ` B ) ) ) |
16 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
17 |
16
|
adantr |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> W e. LMod ) |
18 |
3 1 5 4
|
lmodvscl |
|- ( ( W e. LMod /\ A e. K /\ B e. V ) -> ( A .x. B ) e. V ) |
19 |
17 10 11 18
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( A .x. B ) e. V ) |
20 |
|
oveq1 |
|- ( x = ( A .x. B ) -> ( x ., C ) = ( ( A .x. B ) ., C ) ) |
21 |
|
ovex |
|- ( x ., C ) e. _V |
22 |
20 7 21
|
fvmpt3i |
|- ( ( A .x. B ) e. V -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( ( A .x. B ) ., C ) ) |
23 |
19 22
|
syl |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( ( A .x. B ) ., C ) ) |
24 |
|
oveq1 |
|- ( x = B -> ( x ., C ) = ( B ., C ) ) |
25 |
24 7 21
|
fvmpt3i |
|- ( B e. V -> ( ( x e. V |-> ( x ., C ) ) ` B ) = ( B ., C ) ) |
26 |
11 25
|
syl |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` B ) = ( B ., C ) ) |
27 |
26
|
oveq2d |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( A .X. ( ( x e. V |-> ( x ., C ) ) ` B ) ) = ( A .X. ( B ., C ) ) ) |
28 |
15 23 27
|
3eqtr3d |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A .X. ( B ., C ) ) ) |