Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ipasslem1.b |
|- B e. X |
7 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
8 |
|
ax-1cn |
|- 1 e. CC |
9 |
5
|
phnvi |
|- U e. NrmCVec |
10 |
1 2 3
|
nvdir |
|- ( ( U e. NrmCVec /\ ( k e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G ( 1 S A ) ) ) |
11 |
9 10
|
mpan |
|- ( ( k e. CC /\ 1 e. CC /\ A e. X ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G ( 1 S A ) ) ) |
12 |
8 11
|
mp3an2 |
|- ( ( k e. CC /\ A e. X ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G ( 1 S A ) ) ) |
13 |
7 12
|
sylan |
|- ( ( k e. NN0 /\ A e. X ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G ( 1 S A ) ) ) |
14 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
15 |
9 14
|
mpan |
|- ( A e. X -> ( 1 S A ) = A ) |
16 |
15
|
adantl |
|- ( ( k e. NN0 /\ A e. X ) -> ( 1 S A ) = A ) |
17 |
16
|
oveq2d |
|- ( ( k e. NN0 /\ A e. X ) -> ( ( k S A ) G ( 1 S A ) ) = ( ( k S A ) G A ) ) |
18 |
13 17
|
eqtrd |
|- ( ( k e. NN0 /\ A e. X ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G A ) ) |
19 |
18
|
oveq1d |
|- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( ( k S A ) G A ) P B ) ) |
20 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
21 |
9 6 20
|
mp3an13 |
|- ( A e. X -> ( A P B ) e. CC ) |
22 |
21
|
mulid2d |
|- ( A e. X -> ( 1 x. ( A P B ) ) = ( A P B ) ) |
23 |
22
|
adantl |
|- ( ( k e. NN0 /\ A e. X ) -> ( 1 x. ( A P B ) ) = ( A P B ) ) |
24 |
23
|
oveq2d |
|- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k S A ) P B ) + ( 1 x. ( A P B ) ) ) = ( ( ( k S A ) P B ) + ( A P B ) ) ) |
25 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ k e. CC /\ A e. X ) -> ( k S A ) e. X ) |
26 |
9 25
|
mp3an1 |
|- ( ( k e. CC /\ A e. X ) -> ( k S A ) e. X ) |
27 |
7 26
|
sylan |
|- ( ( k e. NN0 /\ A e. X ) -> ( k S A ) e. X ) |
28 |
1 2 3 4 5
|
ipdiri |
|- ( ( ( k S A ) e. X /\ A e. X /\ B e. X ) -> ( ( ( k S A ) G A ) P B ) = ( ( ( k S A ) P B ) + ( A P B ) ) ) |
29 |
6 28
|
mp3an3 |
|- ( ( ( k S A ) e. X /\ A e. X ) -> ( ( ( k S A ) G A ) P B ) = ( ( ( k S A ) P B ) + ( A P B ) ) ) |
30 |
27 29
|
sylancom |
|- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k S A ) G A ) P B ) = ( ( ( k S A ) P B ) + ( A P B ) ) ) |
31 |
24 30
|
eqtr4d |
|- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k S A ) P B ) + ( 1 x. ( A P B ) ) ) = ( ( ( k S A ) G A ) P B ) ) |
32 |
19 31
|
eqtr4d |
|- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( ( k S A ) P B ) + ( 1 x. ( A P B ) ) ) ) |
33 |
|
oveq1 |
|- ( ( ( k S A ) P B ) = ( k x. ( A P B ) ) -> ( ( ( k S A ) P B ) + ( 1 x. ( A P B ) ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
34 |
32 33
|
sylan9eq |
|- ( ( ( k e. NN0 /\ A e. X ) /\ ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
35 |
|
adddir |
|- ( ( k e. CC /\ 1 e. CC /\ ( A P B ) e. CC ) -> ( ( k + 1 ) x. ( A P B ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
36 |
8 35
|
mp3an2 |
|- ( ( k e. CC /\ ( A P B ) e. CC ) -> ( ( k + 1 ) x. ( A P B ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
37 |
7 21 36
|
syl2an |
|- ( ( k e. NN0 /\ A e. X ) -> ( ( k + 1 ) x. ( A P B ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
38 |
37
|
adantr |
|- ( ( ( k e. NN0 /\ A e. X ) /\ ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) -> ( ( k + 1 ) x. ( A P B ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
39 |
34 38
|
eqtr4d |
|- ( ( ( k e. NN0 /\ A e. X ) /\ ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) |
40 |
39
|
exp31 |
|- ( k e. NN0 -> ( A e. X -> ( ( ( k S A ) P B ) = ( k x. ( A P B ) ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) ) ) |
41 |
40
|
a2d |
|- ( k e. NN0 -> ( ( A e. X -> ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) -> ( A e. X -> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) ) ) |
42 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
43 |
1 42 4
|
dip0l |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( ( 0vec ` U ) P B ) = 0 ) |
44 |
9 6 43
|
mp2an |
|- ( ( 0vec ` U ) P B ) = 0 |
45 |
1 3 42
|
nv0 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 0 S A ) = ( 0vec ` U ) ) |
46 |
9 45
|
mpan |
|- ( A e. X -> ( 0 S A ) = ( 0vec ` U ) ) |
47 |
46
|
oveq1d |
|- ( A e. X -> ( ( 0 S A ) P B ) = ( ( 0vec ` U ) P B ) ) |
48 |
21
|
mul02d |
|- ( A e. X -> ( 0 x. ( A P B ) ) = 0 ) |
49 |
44 47 48
|
3eqtr4a |
|- ( A e. X -> ( ( 0 S A ) P B ) = ( 0 x. ( A P B ) ) ) |
50 |
|
oveq1 |
|- ( j = 0 -> ( j S A ) = ( 0 S A ) ) |
51 |
50
|
oveq1d |
|- ( j = 0 -> ( ( j S A ) P B ) = ( ( 0 S A ) P B ) ) |
52 |
|
oveq1 |
|- ( j = 0 -> ( j x. ( A P B ) ) = ( 0 x. ( A P B ) ) ) |
53 |
51 52
|
eqeq12d |
|- ( j = 0 -> ( ( ( j S A ) P B ) = ( j x. ( A P B ) ) <-> ( ( 0 S A ) P B ) = ( 0 x. ( A P B ) ) ) ) |
54 |
53
|
imbi2d |
|- ( j = 0 -> ( ( A e. X -> ( ( j S A ) P B ) = ( j x. ( A P B ) ) ) <-> ( A e. X -> ( ( 0 S A ) P B ) = ( 0 x. ( A P B ) ) ) ) ) |
55 |
|
oveq1 |
|- ( j = k -> ( j S A ) = ( k S A ) ) |
56 |
55
|
oveq1d |
|- ( j = k -> ( ( j S A ) P B ) = ( ( k S A ) P B ) ) |
57 |
|
oveq1 |
|- ( j = k -> ( j x. ( A P B ) ) = ( k x. ( A P B ) ) ) |
58 |
56 57
|
eqeq12d |
|- ( j = k -> ( ( ( j S A ) P B ) = ( j x. ( A P B ) ) <-> ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) ) |
59 |
58
|
imbi2d |
|- ( j = k -> ( ( A e. X -> ( ( j S A ) P B ) = ( j x. ( A P B ) ) ) <-> ( A e. X -> ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) ) ) |
60 |
|
oveq1 |
|- ( j = ( k + 1 ) -> ( j S A ) = ( ( k + 1 ) S A ) ) |
61 |
60
|
oveq1d |
|- ( j = ( k + 1 ) -> ( ( j S A ) P B ) = ( ( ( k + 1 ) S A ) P B ) ) |
62 |
|
oveq1 |
|- ( j = ( k + 1 ) -> ( j x. ( A P B ) ) = ( ( k + 1 ) x. ( A P B ) ) ) |
63 |
61 62
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( ( ( j S A ) P B ) = ( j x. ( A P B ) ) <-> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) ) |
64 |
63
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( A e. X -> ( ( j S A ) P B ) = ( j x. ( A P B ) ) ) <-> ( A e. X -> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) ) ) |
65 |
|
oveq1 |
|- ( j = N -> ( j S A ) = ( N S A ) ) |
66 |
65
|
oveq1d |
|- ( j = N -> ( ( j S A ) P B ) = ( ( N S A ) P B ) ) |
67 |
|
oveq1 |
|- ( j = N -> ( j x. ( A P B ) ) = ( N x. ( A P B ) ) ) |
68 |
66 67
|
eqeq12d |
|- ( j = N -> ( ( ( j S A ) P B ) = ( j x. ( A P B ) ) <-> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) ) |
69 |
68
|
imbi2d |
|- ( j = N -> ( ( A e. X -> ( ( j S A ) P B ) = ( j x. ( A P B ) ) ) <-> ( A e. X -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) ) ) |
70 |
41 49 54 59 64 69
|
nn0indALT |
|- ( N e. NN0 -> ( A e. X -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) ) |
71 |
70
|
imp |
|- ( ( N e. NN0 /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |