Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ipasslem10.a |
|- A e. X |
7 |
|
ipasslem10.b |
|- B e. X |
8 |
|
ipasslem10.6 |
|- N = ( normCV ` U ) |
9 |
5
|
phnvi |
|- U e. NrmCVec |
10 |
|
ax-icn |
|- _i e. CC |
11 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ _i e. CC /\ A e. X ) -> ( _i S A ) e. X ) |
12 |
9 10 6 11
|
mp3an |
|- ( _i S A ) e. X |
13 |
1 2 3 8 4
|
4ipval2 |
|- ( ( U e. NrmCVec /\ B e. X /\ ( _i S A ) e. X ) -> ( 4 x. ( B P ( _i S A ) ) ) = ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) ) |
14 |
9 7 12 13
|
mp3an |
|- ( 4 x. ( B P ( _i S A ) ) ) = ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) |
15 |
|
4cn |
|- 4 e. CC |
16 |
|
negicn |
|- -u _i e. CC |
17 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B P A ) e. CC ) |
18 |
9 7 6 17
|
mp3an |
|- ( B P A ) e. CC |
19 |
15 16 18
|
mul12i |
|- ( 4 x. ( -u _i x. ( B P A ) ) ) = ( -u _i x. ( 4 x. ( B P A ) ) ) |
20 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ B e. X /\ ( _i S A ) e. X ) -> ( B G ( _i S A ) ) e. X ) |
21 |
9 7 12 20
|
mp3an |
|- ( B G ( _i S A ) ) e. X |
22 |
1 8 9 21
|
nvcli |
|- ( N ` ( B G ( _i S A ) ) ) e. RR |
23 |
22
|
recni |
|- ( N ` ( B G ( _i S A ) ) ) e. CC |
24 |
23
|
sqcli |
|- ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) e. CC |
25 |
|
neg1cn |
|- -u 1 e. CC |
26 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ ( _i S A ) e. X ) -> ( -u 1 S ( _i S A ) ) e. X ) |
27 |
9 25 12 26
|
mp3an |
|- ( -u 1 S ( _i S A ) ) e. X |
28 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ B e. X /\ ( -u 1 S ( _i S A ) ) e. X ) -> ( B G ( -u 1 S ( _i S A ) ) ) e. X ) |
29 |
9 7 27 28
|
mp3an |
|- ( B G ( -u 1 S ( _i S A ) ) ) e. X |
30 |
1 8 9 29
|
nvcli |
|- ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) e. RR |
31 |
30
|
recni |
|- ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) e. CC |
32 |
31
|
sqcli |
|- ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) e. CC |
33 |
24 32
|
subcli |
|- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) e. CC |
34 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ _i e. CC /\ ( _i S A ) e. X ) -> ( _i S ( _i S A ) ) e. X ) |
35 |
9 10 12 34
|
mp3an |
|- ( _i S ( _i S A ) ) e. X |
36 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ B e. X /\ ( _i S ( _i S A ) ) e. X ) -> ( B G ( _i S ( _i S A ) ) ) e. X ) |
37 |
9 7 35 36
|
mp3an |
|- ( B G ( _i S ( _i S A ) ) ) e. X |
38 |
1 8 9 37
|
nvcli |
|- ( N ` ( B G ( _i S ( _i S A ) ) ) ) e. RR |
39 |
38
|
recni |
|- ( N ` ( B G ( _i S ( _i S A ) ) ) ) e. CC |
40 |
39
|
sqcli |
|- ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) e. CC |
41 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u _i e. CC /\ ( _i S A ) e. X ) -> ( -u _i S ( _i S A ) ) e. X ) |
42 |
9 16 12 41
|
mp3an |
|- ( -u _i S ( _i S A ) ) e. X |
43 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ B e. X /\ ( -u _i S ( _i S A ) ) e. X ) -> ( B G ( -u _i S ( _i S A ) ) ) e. X ) |
44 |
9 7 42 43
|
mp3an |
|- ( B G ( -u _i S ( _i S A ) ) ) e. X |
45 |
1 8 9 44
|
nvcli |
|- ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) e. RR |
46 |
45
|
recni |
|- ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) e. CC |
47 |
46
|
sqcli |
|- ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) e. CC |
48 |
40 47
|
subcli |
|- ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) e. CC |
49 |
10 48
|
mulcli |
|- ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) e. CC |
50 |
33 49
|
addcomi |
|- ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) = ( ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) ) |
51 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B G A ) e. X ) |
52 |
9 7 6 51
|
mp3an |
|- ( B G A ) e. X |
53 |
1 8 9 52
|
nvcli |
|- ( N ` ( B G A ) ) e. RR |
54 |
53
|
recni |
|- ( N ` ( B G A ) ) e. CC |
55 |
54
|
sqcli |
|- ( ( N ` ( B G A ) ) ^ 2 ) e. CC |
56 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) |
57 |
9 25 6 56
|
mp3an |
|- ( -u 1 S A ) e. X |
58 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ B e. X /\ ( -u 1 S A ) e. X ) -> ( B G ( -u 1 S A ) ) e. X ) |
59 |
9 7 57 58
|
mp3an |
|- ( B G ( -u 1 S A ) ) e. X |
60 |
1 8 9 59
|
nvcli |
|- ( N ` ( B G ( -u 1 S A ) ) ) e. RR |
61 |
60
|
recni |
|- ( N ` ( B G ( -u 1 S A ) ) ) e. CC |
62 |
61
|
sqcli |
|- ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) e. CC |
63 |
55 62
|
subcli |
|- ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) e. CC |
64 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u _i e. CC /\ A e. X ) -> ( -u _i S A ) e. X ) |
65 |
9 16 6 64
|
mp3an |
|- ( -u _i S A ) e. X |
66 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ B e. X /\ ( -u _i S A ) e. X ) -> ( B G ( -u _i S A ) ) e. X ) |
67 |
9 7 65 66
|
mp3an |
|- ( B G ( -u _i S A ) ) e. X |
68 |
1 8 9 67
|
nvcli |
|- ( N ` ( B G ( -u _i S A ) ) ) e. RR |
69 |
68
|
recni |
|- ( N ` ( B G ( -u _i S A ) ) ) e. CC |
70 |
69
|
sqcli |
|- ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) e. CC |
71 |
24 70
|
subcli |
|- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) e. CC |
72 |
10 71
|
mulcli |
|- ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) e. CC |
73 |
16 63 72
|
adddii |
|- ( -u _i x. ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) = ( ( -u _i x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) + ( -u _i x. ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
74 |
10 10 6
|
3pm3.2i |
|- ( _i e. CC /\ _i e. CC /\ A e. X ) |
75 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( _i e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( _i x. _i ) S A ) = ( _i S ( _i S A ) ) ) |
76 |
9 74 75
|
mp2an |
|- ( ( _i x. _i ) S A ) = ( _i S ( _i S A ) ) |
77 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
78 |
77
|
oveq1i |
|- ( ( _i x. _i ) S A ) = ( -u 1 S A ) |
79 |
76 78
|
eqtr3i |
|- ( _i S ( _i S A ) ) = ( -u 1 S A ) |
80 |
79
|
oveq2i |
|- ( B G ( _i S ( _i S A ) ) ) = ( B G ( -u 1 S A ) ) |
81 |
80
|
fveq2i |
|- ( N ` ( B G ( _i S ( _i S A ) ) ) ) = ( N ` ( B G ( -u 1 S A ) ) ) |
82 |
81
|
oveq1i |
|- ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) = ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) |
83 |
10 10
|
mulneg1i |
|- ( -u _i x. _i ) = -u ( _i x. _i ) |
84 |
77
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
85 |
|
negneg1e1 |
|- -u -u 1 = 1 |
86 |
83 84 85
|
3eqtri |
|- ( -u _i x. _i ) = 1 |
87 |
86
|
oveq1i |
|- ( ( -u _i x. _i ) S A ) = ( 1 S A ) |
88 |
16 10 6
|
3pm3.2i |
|- ( -u _i e. CC /\ _i e. CC /\ A e. X ) |
89 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( -u _i e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( -u _i x. _i ) S A ) = ( -u _i S ( _i S A ) ) ) |
90 |
9 88 89
|
mp2an |
|- ( ( -u _i x. _i ) S A ) = ( -u _i S ( _i S A ) ) |
91 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
92 |
9 6 91
|
mp2an |
|- ( 1 S A ) = A |
93 |
87 90 92
|
3eqtr3i |
|- ( -u _i S ( _i S A ) ) = A |
94 |
93
|
oveq2i |
|- ( B G ( -u _i S ( _i S A ) ) ) = ( B G A ) |
95 |
94
|
fveq2i |
|- ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) = ( N ` ( B G A ) ) |
96 |
95
|
oveq1i |
|- ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) = ( ( N ` ( B G A ) ) ^ 2 ) |
97 |
82 96
|
oveq12i |
|- ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) = ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) |
98 |
97
|
oveq2i |
|- ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) ) |
99 |
63
|
mulm1i |
|- ( -u 1 x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) = -u ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) |
100 |
55 62
|
negsubdi2i |
|- -u ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) = ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) |
101 |
99 100
|
eqtr2i |
|- ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) = ( -u 1 x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) |
102 |
101
|
oveq2i |
|- ( _i x. ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) ) = ( _i x. ( -u 1 x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) ) |
103 |
10 25 63
|
mulassi |
|- ( ( _i x. -u 1 ) x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) = ( _i x. ( -u 1 x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) ) |
104 |
102 103
|
eqtr4i |
|- ( _i x. ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) ) = ( ( _i x. -u 1 ) x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) |
105 |
10
|
mulm1i |
|- ( -u 1 x. _i ) = -u _i |
106 |
25 10 105
|
mulcomli |
|- ( _i x. -u 1 ) = -u _i |
107 |
106
|
oveq1i |
|- ( ( _i x. -u 1 ) x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) = ( -u _i x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) |
108 |
98 104 107
|
3eqtri |
|- ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) = ( -u _i x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) |
109 |
25 10 6
|
3pm3.2i |
|- ( -u 1 e. CC /\ _i e. CC /\ A e. X ) |
110 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( -u 1 x. _i ) S A ) = ( -u 1 S ( _i S A ) ) ) |
111 |
9 109 110
|
mp2an |
|- ( ( -u 1 x. _i ) S A ) = ( -u 1 S ( _i S A ) ) |
112 |
105
|
oveq1i |
|- ( ( -u 1 x. _i ) S A ) = ( -u _i S A ) |
113 |
111 112
|
eqtr3i |
|- ( -u 1 S ( _i S A ) ) = ( -u _i S A ) |
114 |
113
|
oveq2i |
|- ( B G ( -u 1 S ( _i S A ) ) ) = ( B G ( -u _i S A ) ) |
115 |
114
|
fveq2i |
|- ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) |
116 |
115
|
oveq1i |
|- ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) = ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) |
117 |
116
|
oveq2i |
|- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) = ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) |
118 |
71
|
mulid2i |
|- ( 1 x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) = ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) |
119 |
117 118
|
eqtr4i |
|- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) = ( 1 x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) |
120 |
86
|
oveq1i |
|- ( ( -u _i x. _i ) x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) = ( 1 x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) |
121 |
119 120
|
eqtr4i |
|- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) = ( ( -u _i x. _i ) x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) |
122 |
16 10 71
|
mulassi |
|- ( ( -u _i x. _i ) x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) = ( -u _i x. ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) |
123 |
121 122
|
eqtri |
|- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) = ( -u _i x. ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) |
124 |
108 123
|
oveq12i |
|- ( ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) ) = ( ( -u _i x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) + ( -u _i x. ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
125 |
73 124
|
eqtr4i |
|- ( -u _i x. ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) = ( ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) ) |
126 |
50 125
|
eqtr4i |
|- ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) = ( -u _i x. ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
127 |
1 2 3 8 4
|
4ipval2 |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( 4 x. ( B P A ) ) = ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
128 |
9 7 6 127
|
mp3an |
|- ( 4 x. ( B P A ) ) = ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) |
129 |
128
|
oveq2i |
|- ( -u _i x. ( 4 x. ( B P A ) ) ) = ( -u _i x. ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
130 |
126 129
|
eqtr4i |
|- ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) = ( -u _i x. ( 4 x. ( B P A ) ) ) |
131 |
19 130
|
eqtr4i |
|- ( 4 x. ( -u _i x. ( B P A ) ) ) = ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) |
132 |
14 131
|
eqtr4i |
|- ( 4 x. ( B P ( _i S A ) ) ) = ( 4 x. ( -u _i x. ( B P A ) ) ) |
133 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ B e. X /\ ( _i S A ) e. X ) -> ( B P ( _i S A ) ) e. CC ) |
134 |
9 7 12 133
|
mp3an |
|- ( B P ( _i S A ) ) e. CC |
135 |
16 18
|
mulcli |
|- ( -u _i x. ( B P A ) ) e. CC |
136 |
|
4ne0 |
|- 4 =/= 0 |
137 |
134 135 15 136
|
mulcani |
|- ( ( 4 x. ( B P ( _i S A ) ) ) = ( 4 x. ( -u _i x. ( B P A ) ) ) <-> ( B P ( _i S A ) ) = ( -u _i x. ( B P A ) ) ) |
138 |
132 137
|
mpbi |
|- ( B P ( _i S A ) ) = ( -u _i x. ( B P A ) ) |
139 |
138
|
fveq2i |
|- ( * ` ( B P ( _i S A ) ) ) = ( * ` ( -u _i x. ( B P A ) ) ) |
140 |
1 4
|
dipcj |
|- ( ( U e. NrmCVec /\ B e. X /\ ( _i S A ) e. X ) -> ( * ` ( B P ( _i S A ) ) ) = ( ( _i S A ) P B ) ) |
141 |
9 7 12 140
|
mp3an |
|- ( * ` ( B P ( _i S A ) ) ) = ( ( _i S A ) P B ) |
142 |
16 18
|
cjmuli |
|- ( * ` ( -u _i x. ( B P A ) ) ) = ( ( * ` -u _i ) x. ( * ` ( B P A ) ) ) |
143 |
25 10
|
cjmuli |
|- ( * ` ( -u 1 x. _i ) ) = ( ( * ` -u 1 ) x. ( * ` _i ) ) |
144 |
105
|
fveq2i |
|- ( * ` ( -u 1 x. _i ) ) = ( * ` -u _i ) |
145 |
|
neg1rr |
|- -u 1 e. RR |
146 |
25
|
cjrebi |
|- ( -u 1 e. RR <-> ( * ` -u 1 ) = -u 1 ) |
147 |
145 146
|
mpbi |
|- ( * ` -u 1 ) = -u 1 |
148 |
|
cji |
|- ( * ` _i ) = -u _i |
149 |
147 148
|
oveq12i |
|- ( ( * ` -u 1 ) x. ( * ` _i ) ) = ( -u 1 x. -u _i ) |
150 |
|
ax-1cn |
|- 1 e. CC |
151 |
150 10
|
mul2negi |
|- ( -u 1 x. -u _i ) = ( 1 x. _i ) |
152 |
10
|
mulid2i |
|- ( 1 x. _i ) = _i |
153 |
149 151 152
|
3eqtri |
|- ( ( * ` -u 1 ) x. ( * ` _i ) ) = _i |
154 |
143 144 153
|
3eqtr3i |
|- ( * ` -u _i ) = _i |
155 |
1 4
|
dipcj |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
156 |
9 7 6 155
|
mp3an |
|- ( * ` ( B P A ) ) = ( A P B ) |
157 |
154 156
|
oveq12i |
|- ( ( * ` -u _i ) x. ( * ` ( B P A ) ) ) = ( _i x. ( A P B ) ) |
158 |
142 157
|
eqtri |
|- ( * ` ( -u _i x. ( B P A ) ) ) = ( _i x. ( A P B ) ) |
159 |
139 141 158
|
3eqtr3i |
|- ( ( _i S A ) P B ) = ( _i x. ( A P B ) ) |