Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ipasslem1.b |
|- B e. X |
7 |
|
elznn0nn |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
8 |
1 2 3 4 5 6
|
ipasslem1 |
|- ( ( N e. NN0 /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
9 |
|
nnnn0 |
|- ( -u N e. NN -> -u N e. NN0 ) |
10 |
1 2 3 4 5 6
|
ipasslem2 |
|- ( ( -u N e. NN0 /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( -u -u N x. ( A P B ) ) ) |
11 |
9 10
|
sylan |
|- ( ( -u N e. NN /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( -u -u N x. ( A P B ) ) ) |
12 |
11
|
adantll |
|- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( -u -u N x. ( A P B ) ) ) |
13 |
|
recn |
|- ( N e. RR -> N e. CC ) |
14 |
13
|
negnegd |
|- ( N e. RR -> -u -u N = N ) |
15 |
14
|
oveq1d |
|- ( N e. RR -> ( -u -u N S A ) = ( N S A ) ) |
16 |
15
|
oveq1d |
|- ( N e. RR -> ( ( -u -u N S A ) P B ) = ( ( N S A ) P B ) ) |
17 |
16
|
ad2antrr |
|- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( ( N S A ) P B ) ) |
18 |
14
|
oveq1d |
|- ( N e. RR -> ( -u -u N x. ( A P B ) ) = ( N x. ( A P B ) ) ) |
19 |
18
|
ad2antrr |
|- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( -u -u N x. ( A P B ) ) = ( N x. ( A P B ) ) ) |
20 |
12 17 19
|
3eqtr3d |
|- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
21 |
8 20
|
jaoian |
|- ( ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
22 |
7 21
|
sylanb |
|- ( ( N e. ZZ /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |