Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ipasslem1.b |
|- B e. X |
7 |
|
nnrecre |
|- ( N e. NN -> ( 1 / N ) e. RR ) |
8 |
7
|
recnd |
|- ( N e. NN -> ( 1 / N ) e. CC ) |
9 |
5
|
phnvi |
|- U e. NrmCVec |
10 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ ( 1 / N ) e. CC /\ A e. X ) -> ( ( 1 / N ) S A ) e. X ) |
11 |
9 10
|
mp3an1 |
|- ( ( ( 1 / N ) e. CC /\ A e. X ) -> ( ( 1 / N ) S A ) e. X ) |
12 |
8 11
|
sylan |
|- ( ( N e. NN /\ A e. X ) -> ( ( 1 / N ) S A ) e. X ) |
13 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ ( ( 1 / N ) S A ) e. X /\ B e. X ) -> ( ( ( 1 / N ) S A ) P B ) e. CC ) |
14 |
9 6 13
|
mp3an13 |
|- ( ( ( 1 / N ) S A ) e. X -> ( ( ( 1 / N ) S A ) P B ) e. CC ) |
15 |
12 14
|
syl |
|- ( ( N e. NN /\ A e. X ) -> ( ( ( 1 / N ) S A ) P B ) e. CC ) |
16 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
17 |
9 6 16
|
mp3an13 |
|- ( A e. X -> ( A P B ) e. CC ) |
18 |
|
mulcl |
|- ( ( ( 1 / N ) e. CC /\ ( A P B ) e. CC ) -> ( ( 1 / N ) x. ( A P B ) ) e. CC ) |
19 |
8 17 18
|
syl2an |
|- ( ( N e. NN /\ A e. X ) -> ( ( 1 / N ) x. ( A P B ) ) e. CC ) |
20 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
21 |
20
|
adantr |
|- ( ( N e. NN /\ A e. X ) -> N e. CC ) |
22 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
23 |
22
|
adantr |
|- ( ( N e. NN /\ A e. X ) -> N =/= 0 ) |
24 |
20 22
|
recidd |
|- ( N e. NN -> ( N x. ( 1 / N ) ) = 1 ) |
25 |
24
|
oveq1d |
|- ( N e. NN -> ( ( N x. ( 1 / N ) ) x. ( A P B ) ) = ( 1 x. ( A P B ) ) ) |
26 |
17
|
mulid2d |
|- ( A e. X -> ( 1 x. ( A P B ) ) = ( A P B ) ) |
27 |
25 26
|
sylan9eq |
|- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) x. ( A P B ) ) = ( A P B ) ) |
28 |
24
|
oveq1d |
|- ( N e. NN -> ( ( N x. ( 1 / N ) ) S A ) = ( 1 S A ) ) |
29 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
30 |
9 29
|
mpan |
|- ( A e. X -> ( 1 S A ) = A ) |
31 |
28 30
|
sylan9eq |
|- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) S A ) = A ) |
32 |
8
|
adantr |
|- ( ( N e. NN /\ A e. X ) -> ( 1 / N ) e. CC ) |
33 |
|
simpr |
|- ( ( N e. NN /\ A e. X ) -> A e. X ) |
34 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( N e. CC /\ ( 1 / N ) e. CC /\ A e. X ) ) -> ( ( N x. ( 1 / N ) ) S A ) = ( N S ( ( 1 / N ) S A ) ) ) |
35 |
9 34
|
mpan |
|- ( ( N e. CC /\ ( 1 / N ) e. CC /\ A e. X ) -> ( ( N x. ( 1 / N ) ) S A ) = ( N S ( ( 1 / N ) S A ) ) ) |
36 |
21 32 33 35
|
syl3anc |
|- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) S A ) = ( N S ( ( 1 / N ) S A ) ) ) |
37 |
31 36
|
eqtr3d |
|- ( ( N e. NN /\ A e. X ) -> A = ( N S ( ( 1 / N ) S A ) ) ) |
38 |
37
|
oveq1d |
|- ( ( N e. NN /\ A e. X ) -> ( A P B ) = ( ( N S ( ( 1 / N ) S A ) ) P B ) ) |
39 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
40 |
39
|
adantr |
|- ( ( N e. NN /\ A e. X ) -> N e. NN0 ) |
41 |
1 2 3 4 5 6
|
ipasslem1 |
|- ( ( N e. NN0 /\ ( ( 1 / N ) S A ) e. X ) -> ( ( N S ( ( 1 / N ) S A ) ) P B ) = ( N x. ( ( ( 1 / N ) S A ) P B ) ) ) |
42 |
40 12 41
|
syl2anc |
|- ( ( N e. NN /\ A e. X ) -> ( ( N S ( ( 1 / N ) S A ) ) P B ) = ( N x. ( ( ( 1 / N ) S A ) P B ) ) ) |
43 |
27 38 42
|
3eqtrd |
|- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) x. ( A P B ) ) = ( N x. ( ( ( 1 / N ) S A ) P B ) ) ) |
44 |
17
|
adantl |
|- ( ( N e. NN /\ A e. X ) -> ( A P B ) e. CC ) |
45 |
21 32 44
|
mulassd |
|- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) x. ( A P B ) ) = ( N x. ( ( 1 / N ) x. ( A P B ) ) ) ) |
46 |
43 45
|
eqtr3d |
|- ( ( N e. NN /\ A e. X ) -> ( N x. ( ( ( 1 / N ) S A ) P B ) ) = ( N x. ( ( 1 / N ) x. ( A P B ) ) ) ) |
47 |
15 19 21 23 46
|
mulcanad |
|- ( ( N e. NN /\ A e. X ) -> ( ( ( 1 / N ) S A ) P B ) = ( ( 1 / N ) x. ( A P B ) ) ) |