| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ip1i.1 | 
							 |-  X = ( BaseSet ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							ip1i.2 | 
							 |-  G = ( +v ` U )  | 
						
						
							| 3 | 
							
								
							 | 
							ip1i.4 | 
							 |-  S = ( .sOLD ` U )  | 
						
						
							| 4 | 
							
								
							 | 
							ip1i.7 | 
							 |-  P = ( .iOLD ` U )  | 
						
						
							| 5 | 
							
								
							 | 
							ip1i.9 | 
							 |-  U e. CPreHilOLD  | 
						
						
							| 6 | 
							
								
							 | 
							ipasslem1.b | 
							 |-  B e. X  | 
						
						
							| 7 | 
							
								
							 | 
							elq | 
							 |-  ( C e. QQ <-> E. j e. ZZ E. k e. NN C = ( j / k ) )  | 
						
						
							| 8 | 
							
								
							 | 
							zcn | 
							 |-  ( j e. ZZ -> j e. CC )  | 
						
						
							| 9 | 
							
								
							 | 
							nnrecre | 
							 |-  ( k e. NN -> ( 1 / k ) e. RR )  | 
						
						
							| 10 | 
							
								9
							 | 
							recnd | 
							 |-  ( k e. NN -> ( 1 / k ) e. CC )  | 
						
						
							| 11 | 
							
								5
							 | 
							phnvi | 
							 |-  U e. NrmCVec  | 
						
						
							| 12 | 
							
								1 4
							 | 
							dipcl | 
							 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC )  | 
						
						
							| 13 | 
							
								11 6 12
							 | 
							mp3an13 | 
							 |-  ( A e. X -> ( A P B ) e. CC )  | 
						
						
							| 14 | 
							
								
							 | 
							mulass | 
							 |-  ( ( j e. CC /\ ( 1 / k ) e. CC /\ ( A P B ) e. CC ) -> ( ( j x. ( 1 / k ) ) x. ( A P B ) ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) )  | 
						
						
							| 15 | 
							
								8 10 13 14
							 | 
							syl3an | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j x. ( 1 / k ) ) x. ( A P B ) ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) )  | 
						
						
							| 16 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( j e. ZZ /\ k e. NN ) -> j e. CC )  | 
						
						
							| 17 | 
							
								
							 | 
							nncn | 
							 |-  ( k e. NN -> k e. CC )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							 |-  ( ( j e. ZZ /\ k e. NN ) -> k e. CC )  | 
						
						
							| 19 | 
							
								
							 | 
							nnne0 | 
							 |-  ( k e. NN -> k =/= 0 )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantl | 
							 |-  ( ( j e. ZZ /\ k e. NN ) -> k =/= 0 )  | 
						
						
							| 21 | 
							
								16 18 20
							 | 
							divrecd | 
							 |-  ( ( j e. ZZ /\ k e. NN ) -> ( j / k ) = ( j x. ( 1 / k ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3adant3 | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( j / k ) = ( j x. ( 1 / k ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq1d | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j / k ) x. ( A P B ) ) = ( ( j x. ( 1 / k ) ) x. ( A P B ) ) )  | 
						
						
							| 24 | 
							
								22
							 | 
							oveq1d | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j / k ) S A ) = ( ( j x. ( 1 / k ) ) S A ) )  | 
						
						
							| 25 | 
							
								
							 | 
							id | 
							 |-  ( A e. X -> A e. X )  | 
						
						
							| 26 | 
							
								1 3
							 | 
							nvsass | 
							 |-  ( ( U e. NrmCVec /\ ( j e. CC /\ ( 1 / k ) e. CC /\ A e. X ) ) -> ( ( j x. ( 1 / k ) ) S A ) = ( j S ( ( 1 / k ) S A ) ) )  | 
						
						
							| 27 | 
							
								11 26
							 | 
							mpan | 
							 |-  ( ( j e. CC /\ ( 1 / k ) e. CC /\ A e. X ) -> ( ( j x. ( 1 / k ) ) S A ) = ( j S ( ( 1 / k ) S A ) ) )  | 
						
						
							| 28 | 
							
								8 10 25 27
							 | 
							syl3an | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j x. ( 1 / k ) ) S A ) = ( j S ( ( 1 / k ) S A ) ) )  | 
						
						
							| 29 | 
							
								24 28
							 | 
							eqtrd | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j / k ) S A ) = ( j S ( ( 1 / k ) S A ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq1d | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( j / k ) S A ) P B ) = ( ( j S ( ( 1 / k ) S A ) ) P B ) )  | 
						
						
							| 31 | 
							
								1 3
							 | 
							nvscl | 
							 |-  ( ( U e. NrmCVec /\ ( 1 / k ) e. CC /\ A e. X ) -> ( ( 1 / k ) S A ) e. X )  | 
						
						
							| 32 | 
							
								11 31
							 | 
							mp3an1 | 
							 |-  ( ( ( 1 / k ) e. CC /\ A e. X ) -> ( ( 1 / k ) S A ) e. X )  | 
						
						
							| 33 | 
							
								10 32
							 | 
							sylan | 
							 |-  ( ( k e. NN /\ A e. X ) -> ( ( 1 / k ) S A ) e. X )  | 
						
						
							| 34 | 
							
								1 2 3 4 5 6
							 | 
							ipasslem3 | 
							 |-  ( ( j e. ZZ /\ ( ( 1 / k ) S A ) e. X ) -> ( ( j S ( ( 1 / k ) S A ) ) P B ) = ( j x. ( ( ( 1 / k ) S A ) P B ) ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							sylan2 | 
							 |-  ( ( j e. ZZ /\ ( k e. NN /\ A e. X ) ) -> ( ( j S ( ( 1 / k ) S A ) ) P B ) = ( j x. ( ( ( 1 / k ) S A ) P B ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							3impb | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j S ( ( 1 / k ) S A ) ) P B ) = ( j x. ( ( ( 1 / k ) S A ) P B ) ) )  | 
						
						
							| 37 | 
							
								1 2 3 4 5 6
							 | 
							ipasslem4 | 
							 |-  ( ( k e. NN /\ A e. X ) -> ( ( ( 1 / k ) S A ) P B ) = ( ( 1 / k ) x. ( A P B ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							3adant1 | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( 1 / k ) S A ) P B ) = ( ( 1 / k ) x. ( A P B ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							oveq2d | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( j x. ( ( ( 1 / k ) S A ) P B ) ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) )  | 
						
						
							| 40 | 
							
								30 36 39
							 | 
							3eqtrd | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( j / k ) S A ) P B ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) )  | 
						
						
							| 41 | 
							
								15 23 40
							 | 
							3eqtr4rd | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( j / k ) S A ) P B ) = ( ( j / k ) x. ( A P B ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							oveq1 | 
							 |-  ( C = ( j / k ) -> ( C S A ) = ( ( j / k ) S A ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq1d | 
							 |-  ( C = ( j / k ) -> ( ( C S A ) P B ) = ( ( ( j / k ) S A ) P B ) )  | 
						
						
							| 44 | 
							
								
							 | 
							oveq1 | 
							 |-  ( C = ( j / k ) -> ( C x. ( A P B ) ) = ( ( j / k ) x. ( A P B ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							eqeq12d | 
							 |-  ( C = ( j / k ) -> ( ( ( C S A ) P B ) = ( C x. ( A P B ) ) <-> ( ( ( j / k ) S A ) P B ) = ( ( j / k ) x. ( A P B ) ) ) )  | 
						
						
							| 46 | 
							
								41 45
							 | 
							syl5ibrcom | 
							 |-  ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( C = ( j / k ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							3expia | 
							 |-  ( ( j e. ZZ /\ k e. NN ) -> ( A e. X -> ( C = ( j / k ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							com23 | 
							 |-  ( ( j e. ZZ /\ k e. NN ) -> ( C = ( j / k ) -> ( A e. X -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							rexlimivv | 
							 |-  ( E. j e. ZZ E. k e. NN C = ( j / k ) -> ( A e. X -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) )  | 
						
						
							| 50 | 
							
								7 49
							 | 
							sylbi | 
							 |-  ( C e. QQ -> ( A e. X -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							imp | 
							 |-  ( ( C e. QQ /\ A e. X ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) )  |