Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ipasslem1.b |
|- B e. X |
7 |
|
elq |
|- ( C e. QQ <-> E. j e. ZZ E. k e. NN C = ( j / k ) ) |
8 |
|
zcn |
|- ( j e. ZZ -> j e. CC ) |
9 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
10 |
9
|
recnd |
|- ( k e. NN -> ( 1 / k ) e. CC ) |
11 |
5
|
phnvi |
|- U e. NrmCVec |
12 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
13 |
11 6 12
|
mp3an13 |
|- ( A e. X -> ( A P B ) e. CC ) |
14 |
|
mulass |
|- ( ( j e. CC /\ ( 1 / k ) e. CC /\ ( A P B ) e. CC ) -> ( ( j x. ( 1 / k ) ) x. ( A P B ) ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) ) |
15 |
8 10 13 14
|
syl3an |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j x. ( 1 / k ) ) x. ( A P B ) ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) ) |
16 |
8
|
adantr |
|- ( ( j e. ZZ /\ k e. NN ) -> j e. CC ) |
17 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
18 |
17
|
adantl |
|- ( ( j e. ZZ /\ k e. NN ) -> k e. CC ) |
19 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
20 |
19
|
adantl |
|- ( ( j e. ZZ /\ k e. NN ) -> k =/= 0 ) |
21 |
16 18 20
|
divrecd |
|- ( ( j e. ZZ /\ k e. NN ) -> ( j / k ) = ( j x. ( 1 / k ) ) ) |
22 |
21
|
3adant3 |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( j / k ) = ( j x. ( 1 / k ) ) ) |
23 |
22
|
oveq1d |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j / k ) x. ( A P B ) ) = ( ( j x. ( 1 / k ) ) x. ( A P B ) ) ) |
24 |
22
|
oveq1d |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j / k ) S A ) = ( ( j x. ( 1 / k ) ) S A ) ) |
25 |
|
id |
|- ( A e. X -> A e. X ) |
26 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( j e. CC /\ ( 1 / k ) e. CC /\ A e. X ) ) -> ( ( j x. ( 1 / k ) ) S A ) = ( j S ( ( 1 / k ) S A ) ) ) |
27 |
11 26
|
mpan |
|- ( ( j e. CC /\ ( 1 / k ) e. CC /\ A e. X ) -> ( ( j x. ( 1 / k ) ) S A ) = ( j S ( ( 1 / k ) S A ) ) ) |
28 |
8 10 25 27
|
syl3an |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j x. ( 1 / k ) ) S A ) = ( j S ( ( 1 / k ) S A ) ) ) |
29 |
24 28
|
eqtrd |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j / k ) S A ) = ( j S ( ( 1 / k ) S A ) ) ) |
30 |
29
|
oveq1d |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( j / k ) S A ) P B ) = ( ( j S ( ( 1 / k ) S A ) ) P B ) ) |
31 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ ( 1 / k ) e. CC /\ A e. X ) -> ( ( 1 / k ) S A ) e. X ) |
32 |
11 31
|
mp3an1 |
|- ( ( ( 1 / k ) e. CC /\ A e. X ) -> ( ( 1 / k ) S A ) e. X ) |
33 |
10 32
|
sylan |
|- ( ( k e. NN /\ A e. X ) -> ( ( 1 / k ) S A ) e. X ) |
34 |
1 2 3 4 5 6
|
ipasslem3 |
|- ( ( j e. ZZ /\ ( ( 1 / k ) S A ) e. X ) -> ( ( j S ( ( 1 / k ) S A ) ) P B ) = ( j x. ( ( ( 1 / k ) S A ) P B ) ) ) |
35 |
33 34
|
sylan2 |
|- ( ( j e. ZZ /\ ( k e. NN /\ A e. X ) ) -> ( ( j S ( ( 1 / k ) S A ) ) P B ) = ( j x. ( ( ( 1 / k ) S A ) P B ) ) ) |
36 |
35
|
3impb |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j S ( ( 1 / k ) S A ) ) P B ) = ( j x. ( ( ( 1 / k ) S A ) P B ) ) ) |
37 |
1 2 3 4 5 6
|
ipasslem4 |
|- ( ( k e. NN /\ A e. X ) -> ( ( ( 1 / k ) S A ) P B ) = ( ( 1 / k ) x. ( A P B ) ) ) |
38 |
37
|
3adant1 |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( 1 / k ) S A ) P B ) = ( ( 1 / k ) x. ( A P B ) ) ) |
39 |
38
|
oveq2d |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( j x. ( ( ( 1 / k ) S A ) P B ) ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) ) |
40 |
30 36 39
|
3eqtrd |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( j / k ) S A ) P B ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) ) |
41 |
15 23 40
|
3eqtr4rd |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( j / k ) S A ) P B ) = ( ( j / k ) x. ( A P B ) ) ) |
42 |
|
oveq1 |
|- ( C = ( j / k ) -> ( C S A ) = ( ( j / k ) S A ) ) |
43 |
42
|
oveq1d |
|- ( C = ( j / k ) -> ( ( C S A ) P B ) = ( ( ( j / k ) S A ) P B ) ) |
44 |
|
oveq1 |
|- ( C = ( j / k ) -> ( C x. ( A P B ) ) = ( ( j / k ) x. ( A P B ) ) ) |
45 |
43 44
|
eqeq12d |
|- ( C = ( j / k ) -> ( ( ( C S A ) P B ) = ( C x. ( A P B ) ) <-> ( ( ( j / k ) S A ) P B ) = ( ( j / k ) x. ( A P B ) ) ) ) |
46 |
41 45
|
syl5ibrcom |
|- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( C = ( j / k ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
47 |
46
|
3expia |
|- ( ( j e. ZZ /\ k e. NN ) -> ( A e. X -> ( C = ( j / k ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) ) |
48 |
47
|
com23 |
|- ( ( j e. ZZ /\ k e. NN ) -> ( C = ( j / k ) -> ( A e. X -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) ) |
49 |
48
|
rexlimivv |
|- ( E. j e. ZZ E. k e. NN C = ( j / k ) -> ( A e. X -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
50 |
7 49
|
sylbi |
|- ( C e. QQ -> ( A e. X -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
51 |
50
|
imp |
|- ( ( C e. QQ /\ A e. X ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |