Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ipasslem7.a |
|- A e. X |
7 |
|
ipasslem7.b |
|- B e. X |
8 |
|
ipasslem7.f |
|- F = ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) |
9 |
|
ipasslem7.j |
|- J = ( topGen ` ran (,) ) |
10 |
|
ipasslem7.k |
|- K = ( TopOpen ` CCfld ) |
11 |
10
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( K |`t RR ) |
12 |
9 11
|
eqtri |
|- J = ( K |`t RR ) |
13 |
10
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
14 |
13
|
a1i |
|- ( T. -> K e. ( TopOn ` CC ) ) |
15 |
|
ax-resscn |
|- RR C_ CC |
16 |
15
|
a1i |
|- ( T. -> RR C_ CC ) |
17 |
14
|
cnmptid |
|- ( T. -> ( w e. CC |-> w ) e. ( K Cn K ) ) |
18 |
5
|
phnvi |
|- U e. NrmCVec |
19 |
|
eqid |
|- ( IndMet ` U ) = ( IndMet ` U ) |
20 |
1 19
|
imsxmet |
|- ( U e. NrmCVec -> ( IndMet ` U ) e. ( *Met ` X ) ) |
21 |
18 20
|
ax-mp |
|- ( IndMet ` U ) e. ( *Met ` X ) |
22 |
|
eqid |
|- ( MetOpen ` ( IndMet ` U ) ) = ( MetOpen ` ( IndMet ` U ) ) |
23 |
22
|
mopntopon |
|- ( ( IndMet ` U ) e. ( *Met ` X ) -> ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` X ) ) |
24 |
21 23
|
mp1i |
|- ( T. -> ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` X ) ) |
25 |
6
|
a1i |
|- ( T. -> A e. X ) |
26 |
14 24 25
|
cnmptc |
|- ( T. -> ( w e. CC |-> A ) e. ( K Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
27 |
19 22 3 10
|
smcn |
|- ( U e. NrmCVec -> S e. ( ( K tX ( MetOpen ` ( IndMet ` U ) ) ) Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
28 |
18 27
|
mp1i |
|- ( T. -> S e. ( ( K tX ( MetOpen ` ( IndMet ` U ) ) ) Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
29 |
14 17 26 28
|
cnmpt12f |
|- ( T. -> ( w e. CC |-> ( w S A ) ) e. ( K Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
30 |
7
|
a1i |
|- ( T. -> B e. X ) |
31 |
14 24 30
|
cnmptc |
|- ( T. -> ( w e. CC |-> B ) e. ( K Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
32 |
4 19 22 10
|
dipcn |
|- ( U e. NrmCVec -> P e. ( ( ( MetOpen ` ( IndMet ` U ) ) tX ( MetOpen ` ( IndMet ` U ) ) ) Cn K ) ) |
33 |
18 32
|
mp1i |
|- ( T. -> P e. ( ( ( MetOpen ` ( IndMet ` U ) ) tX ( MetOpen ` ( IndMet ` U ) ) ) Cn K ) ) |
34 |
14 29 31 33
|
cnmpt12f |
|- ( T. -> ( w e. CC |-> ( ( w S A ) P B ) ) e. ( K Cn K ) ) |
35 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
36 |
18 6 7 35
|
mp3an |
|- ( A P B ) e. CC |
37 |
36
|
a1i |
|- ( T. -> ( A P B ) e. CC ) |
38 |
14 14 37
|
cnmptc |
|- ( T. -> ( w e. CC |-> ( A P B ) ) e. ( K Cn K ) ) |
39 |
10
|
mulcn |
|- x. e. ( ( K tX K ) Cn K ) |
40 |
39
|
a1i |
|- ( T. -> x. e. ( ( K tX K ) Cn K ) ) |
41 |
14 17 38 40
|
cnmpt12f |
|- ( T. -> ( w e. CC |-> ( w x. ( A P B ) ) ) e. ( K Cn K ) ) |
42 |
10
|
subcn |
|- - e. ( ( K tX K ) Cn K ) |
43 |
42
|
a1i |
|- ( T. -> - e. ( ( K tX K ) Cn K ) ) |
44 |
14 34 41 43
|
cnmpt12f |
|- ( T. -> ( w e. CC |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) e. ( K Cn K ) ) |
45 |
12 14 16 44
|
cnmpt1res |
|- ( T. -> ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) e. ( J Cn K ) ) |
46 |
45
|
mptru |
|- ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) e. ( J Cn K ) |
47 |
8 46
|
eqeltri |
|- F e. ( J Cn K ) |