Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ipasslem7.a |
|- A e. X |
7 |
|
ipasslem7.b |
|- B e. X |
8 |
|
ipasslem7.f |
|- F = ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) |
9 |
|
0cn |
|- 0 e. CC |
10 |
|
qre |
|- ( x e. QQ -> x e. RR ) |
11 |
|
oveq1 |
|- ( w = x -> ( w S A ) = ( x S A ) ) |
12 |
11
|
oveq1d |
|- ( w = x -> ( ( w S A ) P B ) = ( ( x S A ) P B ) ) |
13 |
|
oveq1 |
|- ( w = x -> ( w x. ( A P B ) ) = ( x x. ( A P B ) ) ) |
14 |
12 13
|
oveq12d |
|- ( w = x -> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) = ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) ) |
15 |
|
ovex |
|- ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) e. _V |
16 |
14 8 15
|
fvmpt |
|- ( x e. RR -> ( F ` x ) = ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) ) |
17 |
10 16
|
syl |
|- ( x e. QQ -> ( F ` x ) = ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) ) |
18 |
|
qcn |
|- ( x e. QQ -> x e. CC ) |
19 |
5
|
phnvi |
|- U e. NrmCVec |
20 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ x e. CC /\ A e. X ) -> ( x S A ) e. X ) |
21 |
19 20
|
mp3an1 |
|- ( ( x e. CC /\ A e. X ) -> ( x S A ) e. X ) |
22 |
18 21
|
sylan |
|- ( ( x e. QQ /\ A e. X ) -> ( x S A ) e. X ) |
23 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ ( x S A ) e. X /\ B e. X ) -> ( ( x S A ) P B ) e. CC ) |
24 |
19 7 23
|
mp3an13 |
|- ( ( x S A ) e. X -> ( ( x S A ) P B ) e. CC ) |
25 |
22 24
|
syl |
|- ( ( x e. QQ /\ A e. X ) -> ( ( x S A ) P B ) e. CC ) |
26 |
1 2 3 4 5 7
|
ipasslem5 |
|- ( ( x e. QQ /\ A e. X ) -> ( ( x S A ) P B ) = ( x x. ( A P B ) ) ) |
27 |
25 26
|
subeq0bd |
|- ( ( x e. QQ /\ A e. X ) -> ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) = 0 ) |
28 |
6 27
|
mpan2 |
|- ( x e. QQ -> ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) = 0 ) |
29 |
17 28
|
eqtrd |
|- ( x e. QQ -> ( F ` x ) = 0 ) |
30 |
29
|
rgen |
|- A. x e. QQ ( F ` x ) = 0 |
31 |
8
|
funmpt2 |
|- Fun F |
32 |
|
qssre |
|- QQ C_ RR |
33 |
|
ovex |
|- ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) e. _V |
34 |
33 8
|
dmmpti |
|- dom F = RR |
35 |
32 34
|
sseqtrri |
|- QQ C_ dom F |
36 |
|
funconstss |
|- ( ( Fun F /\ QQ C_ dom F ) -> ( A. x e. QQ ( F ` x ) = 0 <-> QQ C_ ( `' F " { 0 } ) ) ) |
37 |
31 35 36
|
mp2an |
|- ( A. x e. QQ ( F ` x ) = 0 <-> QQ C_ ( `' F " { 0 } ) ) |
38 |
30 37
|
mpbi |
|- QQ C_ ( `' F " { 0 } ) |
39 |
|
qdensere |
|- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR |
40 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
41 |
40
|
cnfldhaus |
|- ( TopOpen ` CCfld ) e. Haus |
42 |
|
haust1 |
|- ( ( TopOpen ` CCfld ) e. Haus -> ( TopOpen ` CCfld ) e. Fre ) |
43 |
41 42
|
ax-mp |
|- ( TopOpen ` CCfld ) e. Fre |
44 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
45 |
1 2 3 4 5 6 7 8 44 40
|
ipasslem7 |
|- F e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) |
46 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
47 |
40
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
48 |
47
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
49 |
46 48
|
dnsconst |
|- ( ( ( ( TopOpen ` CCfld ) e. Fre /\ F e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) /\ ( 0 e. CC /\ QQ C_ ( `' F " { 0 } ) /\ ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR ) ) -> F : RR --> { 0 } ) |
50 |
43 45 49
|
mpanl12 |
|- ( ( 0 e. CC /\ QQ C_ ( `' F " { 0 } ) /\ ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR ) -> F : RR --> { 0 } ) |
51 |
9 38 39 50
|
mp3an |
|- F : RR --> { 0 } |