Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ipasslem9.a |
|- A e. X |
7 |
|
ipasslem9.b |
|- B e. X |
8 |
|
oveq1 |
|- ( w = C -> ( w S A ) = ( C S A ) ) |
9 |
8
|
oveq1d |
|- ( w = C -> ( ( w S A ) P B ) = ( ( C S A ) P B ) ) |
10 |
|
oveq1 |
|- ( w = C -> ( w x. ( A P B ) ) = ( C x. ( A P B ) ) ) |
11 |
9 10
|
oveq12d |
|- ( w = C -> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) = ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) ) |
12 |
|
eqid |
|- ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) = ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) |
13 |
|
ovex |
|- ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) e. _V |
14 |
11 12 13
|
fvmpt |
|- ( C e. RR -> ( ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) ` C ) = ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) ) |
15 |
1 2 3 4 5 6 7 12
|
ipasslem8 |
|- ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) : RR --> { 0 } |
16 |
|
fvconst |
|- ( ( ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) : RR --> { 0 } /\ C e. RR ) -> ( ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) ` C ) = 0 ) |
17 |
15 16
|
mpan |
|- ( C e. RR -> ( ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) ` C ) = 0 ) |
18 |
14 17
|
eqtr3d |
|- ( C e. RR -> ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) = 0 ) |
19 |
|
recn |
|- ( C e. RR -> C e. CC ) |
20 |
5
|
phnvi |
|- U e. NrmCVec |
21 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ C e. CC /\ A e. X ) -> ( C S A ) e. X ) |
22 |
20 6 21
|
mp3an13 |
|- ( C e. CC -> ( C S A ) e. X ) |
23 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ ( C S A ) e. X /\ B e. X ) -> ( ( C S A ) P B ) e. CC ) |
24 |
20 7 23
|
mp3an13 |
|- ( ( C S A ) e. X -> ( ( C S A ) P B ) e. CC ) |
25 |
22 24
|
syl |
|- ( C e. CC -> ( ( C S A ) P B ) e. CC ) |
26 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
27 |
20 6 7 26
|
mp3an |
|- ( A P B ) e. CC |
28 |
|
mulcl |
|- ( ( C e. CC /\ ( A P B ) e. CC ) -> ( C x. ( A P B ) ) e. CC ) |
29 |
27 28
|
mpan2 |
|- ( C e. CC -> ( C x. ( A P B ) ) e. CC ) |
30 |
25 29
|
subeq0ad |
|- ( C e. CC -> ( ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) = 0 <-> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
31 |
19 30
|
syl |
|- ( C e. RR -> ( ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) = 0 <-> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
32 |
18 31
|
mpbid |
|- ( C e. RR -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |