| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | phllmhm.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | phllmhm.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | ipdir.f |  |-  K = ( Base ` F ) | 
						
							| 5 |  | ipass.s |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | ipass.p |  |-  .X. = ( .r ` F ) | 
						
							| 7 |  | ipassr.i |  |-  .* = ( *r ` F ) | 
						
							| 8 |  | simpl |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> W e. PreHil ) | 
						
							| 9 |  | simpr3 |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> C e. K ) | 
						
							| 10 |  | simpr2 |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> B e. V ) | 
						
							| 11 |  | simpr1 |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> A e. V ) | 
						
							| 12 | 1 2 3 4 5 6 | ipass |  |-  ( ( W e. PreHil /\ ( C e. K /\ B e. V /\ A e. V ) ) -> ( ( C .x. B ) ., A ) = ( C .X. ( B ., A ) ) ) | 
						
							| 13 | 8 9 10 11 12 | syl13anc |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( C .x. B ) ., A ) = ( C .X. ( B ., A ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( ( C .x. B ) ., A ) ) = ( .* ` ( C .X. ( B ., A ) ) ) ) | 
						
							| 15 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 16 | 15 | adantr |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> W e. LMod ) | 
						
							| 17 | 3 1 5 4 | lmodvscl |  |-  ( ( W e. LMod /\ C e. K /\ B e. V ) -> ( C .x. B ) e. V ) | 
						
							| 18 | 16 9 10 17 | syl3anc |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( C .x. B ) e. V ) | 
						
							| 19 | 1 2 3 7 | ipcj |  |-  ( ( W e. PreHil /\ ( C .x. B ) e. V /\ A e. V ) -> ( .* ` ( ( C .x. B ) ., A ) ) = ( A ., ( C .x. B ) ) ) | 
						
							| 20 | 8 18 11 19 | syl3anc |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( ( C .x. B ) ., A ) ) = ( A ., ( C .x. B ) ) ) | 
						
							| 21 | 1 | phlsrng |  |-  ( W e. PreHil -> F e. *Ring ) | 
						
							| 22 | 21 | adantr |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> F e. *Ring ) | 
						
							| 23 | 1 2 3 4 | ipcl |  |-  ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( B ., A ) e. K ) | 
						
							| 24 | 8 10 11 23 | syl3anc |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( B ., A ) e. K ) | 
						
							| 25 | 7 4 6 | srngmul |  |-  ( ( F e. *Ring /\ C e. K /\ ( B ., A ) e. K ) -> ( .* ` ( C .X. ( B ., A ) ) ) = ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) ) | 
						
							| 26 | 22 9 24 25 | syl3anc |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( C .X. ( B ., A ) ) ) = ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) ) | 
						
							| 27 | 14 20 26 | 3eqtr3d |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( C .x. B ) ) = ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) ) | 
						
							| 28 | 1 2 3 7 | ipcj |  |-  ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( .* ` ( B ., A ) ) = ( A ., B ) ) | 
						
							| 29 | 8 10 11 28 | syl3anc |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( B ., A ) ) = ( A ., B ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) = ( ( A ., B ) .X. ( .* ` C ) ) ) | 
						
							| 31 | 27 30 | eqtrd |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( C .x. B ) ) = ( ( A ., B ) .X. ( .* ` C ) ) ) |