Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
4 |
|
ipdir.f |
|- K = ( Base ` F ) |
5 |
|
ipass.s |
|- .x. = ( .s ` W ) |
6 |
|
ipass.p |
|- .X. = ( .r ` F ) |
7 |
|
ipassr.i |
|- .* = ( *r ` F ) |
8 |
|
simpl |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> W e. PreHil ) |
9 |
|
simpr3 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> C e. K ) |
10 |
|
simpr2 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> B e. V ) |
11 |
|
simpr1 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> A e. V ) |
12 |
1 2 3 4 5 6
|
ipass |
|- ( ( W e. PreHil /\ ( C e. K /\ B e. V /\ A e. V ) ) -> ( ( C .x. B ) ., A ) = ( C .X. ( B ., A ) ) ) |
13 |
8 9 10 11 12
|
syl13anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( C .x. B ) ., A ) = ( C .X. ( B ., A ) ) ) |
14 |
13
|
fveq2d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( ( C .x. B ) ., A ) ) = ( .* ` ( C .X. ( B ., A ) ) ) ) |
15 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
16 |
15
|
adantr |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> W e. LMod ) |
17 |
3 1 5 4
|
lmodvscl |
|- ( ( W e. LMod /\ C e. K /\ B e. V ) -> ( C .x. B ) e. V ) |
18 |
16 9 10 17
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( C .x. B ) e. V ) |
19 |
1 2 3 7
|
ipcj |
|- ( ( W e. PreHil /\ ( C .x. B ) e. V /\ A e. V ) -> ( .* ` ( ( C .x. B ) ., A ) ) = ( A ., ( C .x. B ) ) ) |
20 |
8 18 11 19
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( ( C .x. B ) ., A ) ) = ( A ., ( C .x. B ) ) ) |
21 |
1
|
phlsrng |
|- ( W e. PreHil -> F e. *Ring ) |
22 |
21
|
adantr |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> F e. *Ring ) |
23 |
1 2 3 4
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( B ., A ) e. K ) |
24 |
8 10 11 23
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( B ., A ) e. K ) |
25 |
7 4 6
|
srngmul |
|- ( ( F e. *Ring /\ C e. K /\ ( B ., A ) e. K ) -> ( .* ` ( C .X. ( B ., A ) ) ) = ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) ) |
26 |
22 9 24 25
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( C .X. ( B ., A ) ) ) = ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) ) |
27 |
14 20 26
|
3eqtr3d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( C .x. B ) ) = ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) ) |
28 |
1 2 3 7
|
ipcj |
|- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( .* ` ( B ., A ) ) = ( A ., B ) ) |
29 |
8 10 11 28
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( B ., A ) ) = ( A ., B ) ) |
30 |
29
|
oveq1d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) = ( ( A ., B ) .X. ( .* ` C ) ) ) |
31 |
27 30
|
eqtrd |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( C .x. B ) ) = ( ( A ., B ) .X. ( .* ` C ) ) ) |