Metamath Proof Explorer


Theorem ipassr2

Description: "Associative" law for inner product. Conjugate version of ipassr . (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f
|- F = ( Scalar ` W )
phllmhm.h
|- ., = ( .i ` W )
phllmhm.v
|- V = ( Base ` W )
ipdir.f
|- K = ( Base ` F )
ipass.s
|- .x. = ( .s ` W )
ipass.p
|- .X. = ( .r ` F )
ipassr.i
|- .* = ( *r ` F )
Assertion ipassr2
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( A ., B ) .X. C ) = ( A ., ( ( .* ` C ) .x. B ) ) )

Proof

Step Hyp Ref Expression
1 phlsrng.f
 |-  F = ( Scalar ` W )
2 phllmhm.h
 |-  ., = ( .i ` W )
3 phllmhm.v
 |-  V = ( Base ` W )
4 ipdir.f
 |-  K = ( Base ` F )
5 ipass.s
 |-  .x. = ( .s ` W )
6 ipass.p
 |-  .X. = ( .r ` F )
7 ipassr.i
 |-  .* = ( *r ` F )
8 simpl
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> W e. PreHil )
9 simpr1
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> A e. V )
10 simpr2
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> B e. V )
11 1 phlsrng
 |-  ( W e. PreHil -> F e. *Ring )
12 simpr3
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> C e. K )
13 7 4 srngcl
 |-  ( ( F e. *Ring /\ C e. K ) -> ( .* ` C ) e. K )
14 11 12 13 syl2an2r
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` C ) e. K )
15 1 2 3 4 5 6 7 ipassr
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ ( .* ` C ) e. K ) ) -> ( A ., ( ( .* ` C ) .x. B ) ) = ( ( A ., B ) .X. ( .* ` ( .* ` C ) ) ) )
16 8 9 10 14 15 syl13anc
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( ( .* ` C ) .x. B ) ) = ( ( A ., B ) .X. ( .* ` ( .* ` C ) ) ) )
17 7 4 srngnvl
 |-  ( ( F e. *Ring /\ C e. K ) -> ( .* ` ( .* ` C ) ) = C )
18 11 12 17 syl2an2r
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( .* ` C ) ) = C )
19 18 oveq2d
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( A ., B ) .X. ( .* ` ( .* ` C ) ) ) = ( ( A ., B ) .X. C ) )
20 16 19 eqtr2d
 |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( A ., B ) .X. C ) = ( A ., ( ( .* ` C ) .x. B ) ) )