Step |
Hyp |
Ref |
Expression |
1 |
|
ipcau.v |
|- V = ( Base ` W ) |
2 |
|
ipcau.h |
|- ., = ( .i ` W ) |
3 |
|
ipcau.n |
|- N = ( norm ` W ) |
4 |
|
eqid |
|- ( toCPreHil ` W ) = ( toCPreHil ` W ) |
5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
6 |
|
simp1 |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> W e. CPreHil ) |
7 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
8 |
6 7
|
syl |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> W e. PreHil ) |
9 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
10 |
5 9
|
cphsca |
|- ( W e. CPreHil -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
11 |
6 10
|
syl |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
12 |
5 9
|
cphsqrtcl |
|- ( ( W e. CPreHil /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` ( Scalar ` W ) ) ) |
13 |
6 12
|
sylan |
|- ( ( ( W e. CPreHil /\ X e. V /\ Y e. V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` ( Scalar ` W ) ) ) |
14 |
1 2
|
ipge0 |
|- ( ( W e. CPreHil /\ x e. V ) -> 0 <_ ( x ., x ) ) |
15 |
6 14
|
sylan |
|- ( ( ( W e. CPreHil /\ X e. V /\ Y e. V ) /\ x e. V ) -> 0 <_ ( x ., x ) ) |
16 |
|
eqid |
|- ( norm ` ( toCPreHil ` W ) ) = ( norm ` ( toCPreHil ` W ) ) |
17 |
|
eqid |
|- ( ( Y ., X ) / ( Y ., Y ) ) = ( ( Y ., X ) / ( Y ., Y ) ) |
18 |
|
simp2 |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> X e. V ) |
19 |
|
simp3 |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> Y e. V ) |
20 |
4 1 5 8 11 2 13 15 9 16 17 18 19
|
ipcau2 |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( abs ` ( X ., Y ) ) <_ ( ( ( norm ` ( toCPreHil ` W ) ) ` X ) x. ( ( norm ` ( toCPreHil ` W ) ) ` Y ) ) ) |
21 |
4 3
|
cphtcphnm |
|- ( W e. CPreHil -> N = ( norm ` ( toCPreHil ` W ) ) ) |
22 |
6 21
|
syl |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> N = ( norm ` ( toCPreHil ` W ) ) ) |
23 |
22
|
fveq1d |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( N ` X ) = ( ( norm ` ( toCPreHil ` W ) ) ` X ) ) |
24 |
22
|
fveq1d |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( N ` Y ) = ( ( norm ` ( toCPreHil ` W ) ) ` Y ) ) |
25 |
23 24
|
oveq12d |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( ( N ` X ) x. ( N ` Y ) ) = ( ( ( norm ` ( toCPreHil ` W ) ) ` X ) x. ( ( norm ` ( toCPreHil ` W ) ) ` Y ) ) ) |
26 |
20 25
|
breqtrrd |
|- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( abs ` ( X ., Y ) ) <_ ( ( N ` X ) x. ( N ` Y ) ) ) |