| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | phllmhm.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | phllmhm.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | ipcl.f |  |-  K = ( Base ` F ) | 
						
							| 5 |  | eqid |  |-  ( x e. V |-> ( x ., B ) ) = ( x e. V |-> ( x ., B ) ) | 
						
							| 6 | 1 2 3 5 | phllmhm |  |-  ( ( W e. PreHil /\ B e. V ) -> ( x e. V |-> ( x ., B ) ) e. ( W LMHom ( ringLMod ` F ) ) ) | 
						
							| 7 |  | rlmbas |  |-  ( Base ` F ) = ( Base ` ( ringLMod ` F ) ) | 
						
							| 8 | 4 7 | eqtri |  |-  K = ( Base ` ( ringLMod ` F ) ) | 
						
							| 9 | 3 8 | lmhmf |  |-  ( ( x e. V |-> ( x ., B ) ) e. ( W LMHom ( ringLMod ` F ) ) -> ( x e. V |-> ( x ., B ) ) : V --> K ) | 
						
							| 10 | 6 9 | syl |  |-  ( ( W e. PreHil /\ B e. V ) -> ( x e. V |-> ( x ., B ) ) : V --> K ) | 
						
							| 11 | 5 | fmpt |  |-  ( A. x e. V ( x ., B ) e. K <-> ( x e. V |-> ( x ., B ) ) : V --> K ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( ( W e. PreHil /\ B e. V ) -> A. x e. V ( x ., B ) e. K ) | 
						
							| 13 |  | oveq1 |  |-  ( x = A -> ( x ., B ) = ( A ., B ) ) | 
						
							| 14 | 13 | eleq1d |  |-  ( x = A -> ( ( x ., B ) e. K <-> ( A ., B ) e. K ) ) | 
						
							| 15 | 14 | rspccva |  |-  ( ( A. x e. V ( x ., B ) e. K /\ A e. V ) -> ( A ., B ) e. K ) | 
						
							| 16 | 12 15 | stoic3 |  |-  ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( A ., B ) e. K ) | 
						
							| 17 | 16 | 3com23 |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. K ) |