Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
4 |
|
ipcl.f |
|- K = ( Base ` F ) |
5 |
|
eqid |
|- ( x e. V |-> ( x ., B ) ) = ( x e. V |-> ( x ., B ) ) |
6 |
1 2 3 5
|
phllmhm |
|- ( ( W e. PreHil /\ B e. V ) -> ( x e. V |-> ( x ., B ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
7 |
|
rlmbas |
|- ( Base ` F ) = ( Base ` ( ringLMod ` F ) ) |
8 |
4 7
|
eqtri |
|- K = ( Base ` ( ringLMod ` F ) ) |
9 |
3 8
|
lmhmf |
|- ( ( x e. V |-> ( x ., B ) ) e. ( W LMHom ( ringLMod ` F ) ) -> ( x e. V |-> ( x ., B ) ) : V --> K ) |
10 |
6 9
|
syl |
|- ( ( W e. PreHil /\ B e. V ) -> ( x e. V |-> ( x ., B ) ) : V --> K ) |
11 |
5
|
fmpt |
|- ( A. x e. V ( x ., B ) e. K <-> ( x e. V |-> ( x ., B ) ) : V --> K ) |
12 |
10 11
|
sylibr |
|- ( ( W e. PreHil /\ B e. V ) -> A. x e. V ( x ., B ) e. K ) |
13 |
|
oveq1 |
|- ( x = A -> ( x ., B ) = ( A ., B ) ) |
14 |
13
|
eleq1d |
|- ( x = A -> ( ( x ., B ) e. K <-> ( A ., B ) e. K ) ) |
15 |
14
|
rspccva |
|- ( ( A. x e. V ( x ., B ) e. K /\ A e. V ) -> ( A ., B ) e. K ) |
16 |
12 15
|
stoic3 |
|- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( A ., B ) e. K ) |
17 |
16
|
3com23 |
|- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. K ) |