| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipcn.f |
|- ., = ( .if ` W ) |
| 2 |
|
ipcn.j |
|- J = ( TopOpen ` W ) |
| 3 |
|
ipcn.k |
|- K = ( TopOpen ` CCfld ) |
| 4 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
| 5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 7 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 8 |
5 1 6 7
|
phlipf |
|- ( W e. PreHil -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> ( Base ` ( Scalar ` W ) ) ) |
| 9 |
4 8
|
syl |
|- ( W e. CPreHil -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> ( Base ` ( Scalar ` W ) ) ) |
| 10 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
| 11 |
6 7
|
clmsscn |
|- ( W e. CMod -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
| 12 |
10 11
|
syl |
|- ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
| 13 |
9 12
|
fssd |
|- ( W e. CPreHil -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC ) |
| 14 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
| 15 |
|
eqid |
|- ( dist ` W ) = ( dist ` W ) |
| 16 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
| 17 |
|
eqid |
|- ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) = ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) |
| 18 |
|
eqid |
|- ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) ) ) = ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) ) ) |
| 19 |
|
simpll |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> W e. CPreHil ) |
| 20 |
|
simplrl |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> x e. ( Base ` W ) ) |
| 21 |
|
simplrr |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> y e. ( Base ` W ) ) |
| 22 |
|
simpr |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> r e. RR+ ) |
| 23 |
5 14 15 16 17 18 19 20 21 22
|
ipcnlem1 |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) |
| 24 |
23
|
ralrimiva |
|- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) |
| 25 |
|
simplrl |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
| 26 |
|
simprl |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
| 27 |
25 26
|
ovresd |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) = ( x ( dist ` W ) z ) ) |
| 28 |
27
|
breq1d |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s <-> ( x ( dist ` W ) z ) < s ) ) |
| 29 |
|
simplrr |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
| 30 |
|
simprr |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> w e. ( Base ` W ) ) |
| 31 |
29 30
|
ovresd |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) = ( y ( dist ` W ) w ) ) |
| 32 |
31
|
breq1d |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s <-> ( y ( dist ` W ) w ) < s ) ) |
| 33 |
28 32
|
anbi12d |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) <-> ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) ) ) |
| 34 |
13
|
ad2antrr |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC ) |
| 35 |
34 25 29
|
fovcdmd |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( x ., y ) e. CC ) |
| 36 |
34 26 30
|
fovcdmd |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( z ., w ) e. CC ) |
| 37 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 38 |
37
|
cnmetdval |
|- ( ( ( x ., y ) e. CC /\ ( z ., w ) e. CC ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) = ( abs ` ( ( x ., y ) - ( z ., w ) ) ) ) |
| 39 |
35 36 38
|
syl2anc |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) = ( abs ` ( ( x ., y ) - ( z ., w ) ) ) ) |
| 40 |
5 14 1
|
ipfval |
|- ( ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( x ., y ) = ( x ( .i ` W ) y ) ) |
| 41 |
25 29 40
|
syl2anc |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( x ., y ) = ( x ( .i ` W ) y ) ) |
| 42 |
5 14 1
|
ipfval |
|- ( ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) -> ( z ., w ) = ( z ( .i ` W ) w ) ) |
| 43 |
42
|
adantl |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( z ., w ) = ( z ( .i ` W ) w ) ) |
| 44 |
41 43
|
oveq12d |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ., y ) - ( z ., w ) ) = ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) |
| 45 |
44
|
fveq2d |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( abs ` ( ( x ., y ) - ( z ., w ) ) ) = ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) ) |
| 46 |
39 45
|
eqtrd |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) = ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) ) |
| 47 |
46
|
breq1d |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r <-> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) |
| 48 |
33 47
|
imbi12d |
|- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) |
| 49 |
48
|
2ralbidva |
|- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) |
| 50 |
49
|
rexbidv |
|- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) |
| 51 |
50
|
ralbidv |
|- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) |
| 52 |
24 51
|
mpbird |
|- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) |
| 53 |
52
|
ralrimivva |
|- ( W e. CPreHil -> A. x e. ( Base ` W ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) |
| 54 |
|
cphngp |
|- ( W e. CPreHil -> W e. NrmGrp ) |
| 55 |
|
ngpms |
|- ( W e. NrmGrp -> W e. MetSp ) |
| 56 |
54 55
|
syl |
|- ( W e. CPreHil -> W e. MetSp ) |
| 57 |
|
msxms |
|- ( W e. MetSp -> W e. *MetSp ) |
| 58 |
56 57
|
syl |
|- ( W e. CPreHil -> W e. *MetSp ) |
| 59 |
|
eqid |
|- ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |
| 60 |
5 59
|
xmsxmet |
|- ( W e. *MetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 61 |
58 60
|
syl |
|- ( W e. CPreHil -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 62 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 63 |
62
|
a1i |
|- ( W e. CPreHil -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 64 |
|
eqid |
|- ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
| 65 |
3
|
cnfldtopn |
|- K = ( MetOpen ` ( abs o. - ) ) |
| 66 |
64 64 65
|
txmetcn |
|- ( ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( abs o. - ) e. ( *Met ` CC ) ) -> ( ., e. ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) <-> ( ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC /\ A. x e. ( Base ` W ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) ) ) |
| 67 |
61 61 63 66
|
syl3anc |
|- ( W e. CPreHil -> ( ., e. ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) <-> ( ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC /\ A. x e. ( Base ` W ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) ) ) |
| 68 |
13 53 67
|
mpbir2and |
|- ( W e. CPreHil -> ., e. ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) ) |
| 69 |
2 5 59
|
mstopn |
|- ( W e. MetSp -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 70 |
56 69
|
syl |
|- ( W e. CPreHil -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 71 |
70 70
|
oveq12d |
|- ( W e. CPreHil -> ( J tX J ) = ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
| 72 |
71
|
oveq1d |
|- ( W e. CPreHil -> ( ( J tX J ) Cn K ) = ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) ) |
| 73 |
68 72
|
eleqtrrd |
|- ( W e. CPreHil -> ., e. ( ( J tX J ) Cn K ) ) |