Description: Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | recld.1 | |- ( ph -> A e. CC ) |
|
readdd.2 | |- ( ph -> B e. CC ) |
||
Assertion | ipcnd | |- ( ph -> ( Re ` ( A x. ( * ` B ) ) ) = ( ( ( Re ` A ) x. ( Re ` B ) ) + ( ( Im ` A ) x. ( Im ` B ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | |- ( ph -> A e. CC ) |
|
2 | readdd.2 | |- ( ph -> B e. CC ) |
|
3 | ipcnval | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A x. ( * ` B ) ) ) = ( ( ( Re ` A ) x. ( Re ` B ) ) + ( ( Im ` A ) x. ( Im ` B ) ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( Re ` ( A x. ( * ` B ) ) ) = ( ( ( Re ` A ) x. ( Re ` B ) ) + ( ( Im ` A ) x. ( Im ` B ) ) ) ) |