Description: Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recl.1 | |- A e. CC | |
| readdi.2 | |- B e. CC | ||
| Assertion | ipcni | |- ( Re ` ( A x. ( * ` B ) ) ) = ( ( ( Re ` A ) x. ( Re ` B ) ) + ( ( Im ` A ) x. ( Im ` B ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recl.1 | |- A e. CC | |
| 2 | readdi.2 | |- B e. CC | |
| 3 | ipcnval | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A x. ( * ` B ) ) ) = ( ( ( Re ` A ) x. ( Re ` B ) ) + ( ( Im ` A ) x. ( Im ` B ) ) ) ) | |
| 4 | 1 2 3 | mp2an | |- ( Re ` ( A x. ( * ` B ) ) ) = ( ( ( Re ` A ) x. ( Re ` B ) ) + ( ( Im ` A ) x. ( Im ` B ) ) ) |