| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
| 2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
| 3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
| 4 |
|
ipdir.g |
|- .+ = ( +g ` W ) |
| 5 |
|
ipdir.p |
|- .+^ = ( +g ` F ) |
| 6 |
|
simpl |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. PreHil ) |
| 7 |
|
simpr2 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) |
| 8 |
|
simpr3 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) |
| 9 |
|
simpr1 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) |
| 10 |
1 2 3 4 5
|
ipdir |
|- ( ( W e. PreHil /\ ( B e. V /\ C e. V /\ A e. V ) ) -> ( ( B .+ C ) ., A ) = ( ( B ., A ) .+^ ( C ., A ) ) ) |
| 11 |
6 7 8 9 10
|
syl13anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( B .+ C ) ., A ) = ( ( B ., A ) .+^ ( C ., A ) ) ) |
| 12 |
11
|
fveq2d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( ( B .+ C ) ., A ) ) = ( ( *r ` F ) ` ( ( B ., A ) .+^ ( C ., A ) ) ) ) |
| 13 |
1
|
phlsrng |
|- ( W e. PreHil -> F e. *Ring ) |
| 14 |
13
|
adantr |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> F e. *Ring ) |
| 15 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 16 |
1 2 3 15
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( B ., A ) e. ( Base ` F ) ) |
| 17 |
6 7 9 16
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( B ., A ) e. ( Base ` F ) ) |
| 18 |
1 2 3 15
|
ipcl |
|- ( ( W e. PreHil /\ C e. V /\ A e. V ) -> ( C ., A ) e. ( Base ` F ) ) |
| 19 |
6 8 9 18
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( C ., A ) e. ( Base ` F ) ) |
| 20 |
|
eqid |
|- ( *r ` F ) = ( *r ` F ) |
| 21 |
20 15 5
|
srngadd |
|- ( ( F e. *Ring /\ ( B ., A ) e. ( Base ` F ) /\ ( C ., A ) e. ( Base ` F ) ) -> ( ( *r ` F ) ` ( ( B ., A ) .+^ ( C ., A ) ) ) = ( ( ( *r ` F ) ` ( B ., A ) ) .+^ ( ( *r ` F ) ` ( C ., A ) ) ) ) |
| 22 |
14 17 19 21
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( ( B ., A ) .+^ ( C ., A ) ) ) = ( ( ( *r ` F ) ` ( B ., A ) ) .+^ ( ( *r ` F ) ` ( C ., A ) ) ) ) |
| 23 |
12 22
|
eqtrd |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( ( B .+ C ) ., A ) ) = ( ( ( *r ` F ) ` ( B ., A ) ) .+^ ( ( *r ` F ) ` ( C ., A ) ) ) ) |
| 24 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
| 25 |
24
|
adantr |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. LMod ) |
| 26 |
3 4
|
lmodvacl |
|- ( ( W e. LMod /\ B e. V /\ C e. V ) -> ( B .+ C ) e. V ) |
| 27 |
25 7 8 26
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( B .+ C ) e. V ) |
| 28 |
1 2 3 20
|
ipcj |
|- ( ( W e. PreHil /\ ( B .+ C ) e. V /\ A e. V ) -> ( ( *r ` F ) ` ( ( B .+ C ) ., A ) ) = ( A ., ( B .+ C ) ) ) |
| 29 |
6 27 9 28
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( ( B .+ C ) ., A ) ) = ( A ., ( B .+ C ) ) ) |
| 30 |
1 2 3 20
|
ipcj |
|- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( ( *r ` F ) ` ( B ., A ) ) = ( A ., B ) ) |
| 31 |
6 7 9 30
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( B ., A ) ) = ( A ., B ) ) |
| 32 |
1 2 3 20
|
ipcj |
|- ( ( W e. PreHil /\ C e. V /\ A e. V ) -> ( ( *r ` F ) ` ( C ., A ) ) = ( A ., C ) ) |
| 33 |
6 8 9 32
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( C ., A ) ) = ( A ., C ) ) |
| 34 |
31 33
|
oveq12d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( *r ` F ) ` ( B ., A ) ) .+^ ( ( *r ` F ) ` ( C ., A ) ) ) = ( ( A ., B ) .+^ ( A ., C ) ) ) |
| 35 |
23 29 34
|
3eqtr3d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .+ C ) ) = ( ( A ., B ) .+^ ( A ., C ) ) ) |