Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
6 |
|
ipdiri.8 |
|- A e. X |
7 |
|
ipdiri.9 |
|- B e. X |
8 |
|
ipdiri.10 |
|- C e. X |
9 |
|
2cn |
|- 2 e. CC |
10 |
|
2ne0 |
|- 2 =/= 0 |
11 |
9 10
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
12 |
11
|
oveq1i |
|- ( ( 2 x. ( 1 / 2 ) ) S ( A G B ) ) = ( 1 S ( A G B ) ) |
13 |
5
|
phnvi |
|- U e. NrmCVec |
14 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
15 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
16 |
13 6 7 15
|
mp3an |
|- ( A G B ) e. X |
17 |
9 14 16
|
3pm3.2i |
|- ( 2 e. CC /\ ( 1 / 2 ) e. CC /\ ( A G B ) e. X ) |
18 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( 2 e. CC /\ ( 1 / 2 ) e. CC /\ ( A G B ) e. X ) ) -> ( ( 2 x. ( 1 / 2 ) ) S ( A G B ) ) = ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) ) |
19 |
13 17 18
|
mp2an |
|- ( ( 2 x. ( 1 / 2 ) ) S ( A G B ) ) = ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) |
20 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X ) -> ( 1 S ( A G B ) ) = ( A G B ) ) |
21 |
13 16 20
|
mp2an |
|- ( 1 S ( A G B ) ) = ( A G B ) |
22 |
12 19 21
|
3eqtr3i |
|- ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) = ( A G B ) |
23 |
22
|
oveq1i |
|- ( ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) P C ) = ( ( A G B ) P C ) |
24 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ ( 1 / 2 ) e. CC /\ ( A G B ) e. X ) -> ( ( 1 / 2 ) S ( A G B ) ) e. X ) |
25 |
13 14 16 24
|
mp3an |
|- ( ( 1 / 2 ) S ( A G B ) ) e. X |
26 |
1 2 3 4 5 25 8
|
ip2i |
|- ( ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) P C ) = ( 2 x. ( ( ( 1 / 2 ) S ( A G B ) ) P C ) ) |
27 |
23 26
|
eqtr3i |
|- ( ( A G B ) P C ) = ( 2 x. ( ( ( 1 / 2 ) S ( A G B ) ) P C ) ) |
28 |
|
neg1cn |
|- -u 1 e. CC |
29 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 S B ) e. X ) |
30 |
13 28 7 29
|
mp3an |
|- ( -u 1 S B ) e. X |
31 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 S B ) e. X ) -> ( A G ( -u 1 S B ) ) e. X ) |
32 |
13 6 30 31
|
mp3an |
|- ( A G ( -u 1 S B ) ) e. X |
33 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ ( 1 / 2 ) e. CC /\ ( A G ( -u 1 S B ) ) e. X ) -> ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) e. X ) |
34 |
13 14 32 33
|
mp3an |
|- ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) e. X |
35 |
1 2 3 4 5 25 34 8
|
ip1i |
|- ( ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) P C ) + ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) P C ) ) = ( 2 x. ( ( ( 1 / 2 ) S ( A G B ) ) P C ) ) |
36 |
|
eqid |
|- ( 1st ` U ) = ( 1st ` U ) |
37 |
36
|
nvvc |
|- ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) |
38 |
13 37
|
ax-mp |
|- ( 1st ` U ) e. CVecOLD |
39 |
2
|
vafval |
|- G = ( 1st ` ( 1st ` U ) ) |
40 |
39
|
vcablo |
|- ( ( 1st ` U ) e. CVecOLD -> G e. AbelOp ) |
41 |
38 40
|
ax-mp |
|- G e. AbelOp |
42 |
6 7
|
pm3.2i |
|- ( A e. X /\ B e. X ) |
43 |
6 30
|
pm3.2i |
|- ( A e. X /\ ( -u 1 S B ) e. X ) |
44 |
1 2
|
bafval |
|- X = ran G |
45 |
44
|
ablo4 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) /\ ( A e. X /\ ( -u 1 S B ) e. X ) ) -> ( ( A G B ) G ( A G ( -u 1 S B ) ) ) = ( ( A G A ) G ( B G ( -u 1 S B ) ) ) ) |
46 |
41 42 43 45
|
mp3an |
|- ( ( A G B ) G ( A G ( -u 1 S B ) ) ) = ( ( A G A ) G ( B G ( -u 1 S B ) ) ) |
47 |
3
|
smfval |
|- S = ( 2nd ` ( 1st ` U ) ) |
48 |
39 47 44
|
vc2OLD |
|- ( ( ( 1st ` U ) e. CVecOLD /\ A e. X ) -> ( A G A ) = ( 2 S A ) ) |
49 |
38 6 48
|
mp2an |
|- ( A G A ) = ( 2 S A ) |
50 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
51 |
1 2 3 50
|
nvrinv |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( B G ( -u 1 S B ) ) = ( 0vec ` U ) ) |
52 |
13 7 51
|
mp2an |
|- ( B G ( -u 1 S B ) ) = ( 0vec ` U ) |
53 |
49 52
|
oveq12i |
|- ( ( A G A ) G ( B G ( -u 1 S B ) ) ) = ( ( 2 S A ) G ( 0vec ` U ) ) |
54 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ 2 e. CC /\ A e. X ) -> ( 2 S A ) e. X ) |
55 |
13 9 6 54
|
mp3an |
|- ( 2 S A ) e. X |
56 |
1 2 50
|
nv0rid |
|- ( ( U e. NrmCVec /\ ( 2 S A ) e. X ) -> ( ( 2 S A ) G ( 0vec ` U ) ) = ( 2 S A ) ) |
57 |
13 55 56
|
mp2an |
|- ( ( 2 S A ) G ( 0vec ` U ) ) = ( 2 S A ) |
58 |
46 53 57
|
3eqtri |
|- ( ( A G B ) G ( A G ( -u 1 S B ) ) ) = ( 2 S A ) |
59 |
58
|
oveq2i |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) ) = ( ( 1 / 2 ) S ( 2 S A ) ) |
60 |
14 9 6
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ 2 e. CC /\ A e. X ) |
61 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ 2 e. CC /\ A e. X ) ) -> ( ( ( 1 / 2 ) x. 2 ) S A ) = ( ( 1 / 2 ) S ( 2 S A ) ) ) |
62 |
13 60 61
|
mp2an |
|- ( ( ( 1 / 2 ) x. 2 ) S A ) = ( ( 1 / 2 ) S ( 2 S A ) ) |
63 |
59 62
|
eqtr4i |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) ) = ( ( ( 1 / 2 ) x. 2 ) S A ) |
64 |
14 16 32
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ ( A G B ) e. X /\ ( A G ( -u 1 S B ) ) e. X ) |
65 |
1 2 3
|
nvdi |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ ( A G B ) e. X /\ ( A G ( -u 1 S B ) ) e. X ) ) -> ( ( 1 / 2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) |
66 |
13 64 65
|
mp2an |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) |
67 |
|
ax-1cn |
|- 1 e. CC |
68 |
67 9 10
|
divcan1i |
|- ( ( 1 / 2 ) x. 2 ) = 1 |
69 |
68
|
oveq1i |
|- ( ( ( 1 / 2 ) x. 2 ) S A ) = ( 1 S A ) |
70 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
71 |
13 6 70
|
mp2an |
|- ( 1 S A ) = A |
72 |
69 71
|
eqtri |
|- ( ( ( 1 / 2 ) x. 2 ) S A ) = A |
73 |
63 66 72
|
3eqtr3i |
|- ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) = A |
74 |
73
|
oveq1i |
|- ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) P C ) = ( A P C ) |
75 |
28 14
|
mulcomi |
|- ( -u 1 x. ( 1 / 2 ) ) = ( ( 1 / 2 ) x. -u 1 ) |
76 |
75
|
oveq1i |
|- ( ( -u 1 x. ( 1 / 2 ) ) S ( A G ( -u 1 S B ) ) ) = ( ( ( 1 / 2 ) x. -u 1 ) S ( A G ( -u 1 S B ) ) ) |
77 |
28 14 32
|
3pm3.2i |
|- ( -u 1 e. CC /\ ( 1 / 2 ) e. CC /\ ( A G ( -u 1 S B ) ) e. X ) |
78 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ ( 1 / 2 ) e. CC /\ ( A G ( -u 1 S B ) ) e. X ) ) -> ( ( -u 1 x. ( 1 / 2 ) ) S ( A G ( -u 1 S B ) ) ) = ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) |
79 |
13 77 78
|
mp2an |
|- ( ( -u 1 x. ( 1 / 2 ) ) S ( A G ( -u 1 S B ) ) ) = ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) |
80 |
14 28 32
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ -u 1 e. CC /\ ( A G ( -u 1 S B ) ) e. X ) |
81 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ -u 1 e. CC /\ ( A G ( -u 1 S B ) ) e. X ) ) -> ( ( ( 1 / 2 ) x. -u 1 ) S ( A G ( -u 1 S B ) ) ) = ( ( 1 / 2 ) S ( -u 1 S ( A G ( -u 1 S B ) ) ) ) ) |
82 |
13 80 81
|
mp2an |
|- ( ( ( 1 / 2 ) x. -u 1 ) S ( A G ( -u 1 S B ) ) ) = ( ( 1 / 2 ) S ( -u 1 S ( A G ( -u 1 S B ) ) ) ) |
83 |
28 6 30
|
3pm3.2i |
|- ( -u 1 e. CC /\ A e. X /\ ( -u 1 S B ) e. X ) |
84 |
1 2 3
|
nvdi |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ A e. X /\ ( -u 1 S B ) e. X ) ) -> ( -u 1 S ( A G ( -u 1 S B ) ) ) = ( ( -u 1 S A ) G ( -u 1 S ( -u 1 S B ) ) ) ) |
85 |
13 83 84
|
mp2an |
|- ( -u 1 S ( A G ( -u 1 S B ) ) ) = ( ( -u 1 S A ) G ( -u 1 S ( -u 1 S B ) ) ) |
86 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
87 |
86
|
oveq1i |
|- ( ( -u 1 x. -u 1 ) S B ) = ( 1 S B ) |
88 |
28 28 7
|
3pm3.2i |
|- ( -u 1 e. CC /\ -u 1 e. CC /\ B e. X ) |
89 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ -u 1 e. CC /\ B e. X ) ) -> ( ( -u 1 x. -u 1 ) S B ) = ( -u 1 S ( -u 1 S B ) ) ) |
90 |
13 88 89
|
mp2an |
|- ( ( -u 1 x. -u 1 ) S B ) = ( -u 1 S ( -u 1 S B ) ) |
91 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
92 |
13 7 91
|
mp2an |
|- ( 1 S B ) = B |
93 |
87 90 92
|
3eqtr3i |
|- ( -u 1 S ( -u 1 S B ) ) = B |
94 |
93
|
oveq2i |
|- ( ( -u 1 S A ) G ( -u 1 S ( -u 1 S B ) ) ) = ( ( -u 1 S A ) G B ) |
95 |
85 94
|
eqtri |
|- ( -u 1 S ( A G ( -u 1 S B ) ) ) = ( ( -u 1 S A ) G B ) |
96 |
95
|
oveq2i |
|- ( ( 1 / 2 ) S ( -u 1 S ( A G ( -u 1 S B ) ) ) ) = ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) |
97 |
82 96
|
eqtri |
|- ( ( ( 1 / 2 ) x. -u 1 ) S ( A G ( -u 1 S B ) ) ) = ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) |
98 |
76 79 97
|
3eqtr3i |
|- ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) = ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) |
99 |
98
|
oveq2i |
|- ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) ) |
100 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) |
101 |
13 28 6 100
|
mp3an |
|- ( -u 1 S A ) e. X |
102 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( -u 1 S A ) e. X /\ B e. X ) -> ( ( -u 1 S A ) G B ) e. X ) |
103 |
13 101 7 102
|
mp3an |
|- ( ( -u 1 S A ) G B ) e. X |
104 |
14 16 103
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ ( A G B ) e. X /\ ( ( -u 1 S A ) G B ) e. X ) |
105 |
1 2 3
|
nvdi |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ ( A G B ) e. X /\ ( ( -u 1 S A ) G B ) e. X ) ) -> ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) ) ) |
106 |
13 104 105
|
mp2an |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) ) |
107 |
99 106
|
eqtr4i |
|- ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) = ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) |
108 |
101 7
|
pm3.2i |
|- ( ( -u 1 S A ) e. X /\ B e. X ) |
109 |
44
|
ablo4 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) /\ ( ( -u 1 S A ) e. X /\ B e. X ) ) -> ( ( A G B ) G ( ( -u 1 S A ) G B ) ) = ( ( A G ( -u 1 S A ) ) G ( B G B ) ) ) |
110 |
41 42 108 109
|
mp3an |
|- ( ( A G B ) G ( ( -u 1 S A ) G B ) ) = ( ( A G ( -u 1 S A ) ) G ( B G B ) ) |
111 |
1 2 3 50
|
nvrinv |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = ( 0vec ` U ) ) |
112 |
13 6 111
|
mp2an |
|- ( A G ( -u 1 S A ) ) = ( 0vec ` U ) |
113 |
112
|
oveq1i |
|- ( ( A G ( -u 1 S A ) ) G ( B G B ) ) = ( ( 0vec ` U ) G ( B G B ) ) |
114 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ B e. X /\ B e. X ) -> ( B G B ) e. X ) |
115 |
13 7 7 114
|
mp3an |
|- ( B G B ) e. X |
116 |
1 2 50
|
nv0lid |
|- ( ( U e. NrmCVec /\ ( B G B ) e. X ) -> ( ( 0vec ` U ) G ( B G B ) ) = ( B G B ) ) |
117 |
13 115 116
|
mp2an |
|- ( ( 0vec ` U ) G ( B G B ) ) = ( B G B ) |
118 |
113 117
|
eqtri |
|- ( ( A G ( -u 1 S A ) ) G ( B G B ) ) = ( B G B ) |
119 |
39 47 44
|
vc2OLD |
|- ( ( ( 1st ` U ) e. CVecOLD /\ B e. X ) -> ( B G B ) = ( 2 S B ) ) |
120 |
38 7 119
|
mp2an |
|- ( B G B ) = ( 2 S B ) |
121 |
110 118 120
|
3eqtri |
|- ( ( A G B ) G ( ( -u 1 S A ) G B ) ) = ( 2 S B ) |
122 |
121
|
oveq2i |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) = ( ( 1 / 2 ) S ( 2 S B ) ) |
123 |
14 9 7
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ 2 e. CC /\ B e. X ) |
124 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ 2 e. CC /\ B e. X ) ) -> ( ( ( 1 / 2 ) x. 2 ) S B ) = ( ( 1 / 2 ) S ( 2 S B ) ) ) |
125 |
13 123 124
|
mp2an |
|- ( ( ( 1 / 2 ) x. 2 ) S B ) = ( ( 1 / 2 ) S ( 2 S B ) ) |
126 |
68
|
oveq1i |
|- ( ( ( 1 / 2 ) x. 2 ) S B ) = ( 1 S B ) |
127 |
122 125 126
|
3eqtr2i |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) = ( 1 S B ) |
128 |
107 127 92
|
3eqtri |
|- ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) = B |
129 |
128
|
oveq1i |
|- ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) P C ) = ( B P C ) |
130 |
74 129
|
oveq12i |
|- ( ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) P C ) + ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) P C ) ) = ( ( A P C ) + ( B P C ) ) |
131 |
27 35 130
|
3eqtr2i |
|- ( ( A G B ) P C ) = ( ( A P C ) + ( B P C ) ) |