| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | phllmhm.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | phllmhm.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | ip0l.z |  |-  Z = ( 0g ` F ) | 
						
							| 5 |  | ip0l.o |  |-  .0. = ( 0g ` W ) | 
						
							| 6 |  | eqid |  |-  ( *r ` F ) = ( *r ` F ) | 
						
							| 7 | 3 1 2 5 6 4 | isphl |  |-  ( W e. PreHil <-> ( W e. LVec /\ F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( ( *r ` F ) ` ( x ., y ) ) = ( y ., x ) ) ) ) | 
						
							| 8 | 7 | simp3bi |  |-  ( W e. PreHil -> A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( ( *r ` F ) ` ( x ., y ) ) = ( y ., x ) ) ) | 
						
							| 9 |  | simp2 |  |-  ( ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( ( *r ` F ) ` ( x ., y ) ) = ( y ., x ) ) -> ( ( x ., x ) = Z -> x = .0. ) ) | 
						
							| 10 | 9 | ralimi |  |-  ( A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( ( *r ` F ) ` ( x ., y ) ) = ( y ., x ) ) -> A. x e. V ( ( x ., x ) = Z -> x = .0. ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( W e. PreHil -> A. x e. V ( ( x ., x ) = Z -> x = .0. ) ) | 
						
							| 12 |  | oveq12 |  |-  ( ( x = A /\ x = A ) -> ( x ., x ) = ( A ., A ) ) | 
						
							| 13 | 12 | anidms |  |-  ( x = A -> ( x ., x ) = ( A ., A ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( x = A -> ( ( x ., x ) = Z <-> ( A ., A ) = Z ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( x = A -> ( x = .0. <-> A = .0. ) ) | 
						
							| 16 | 14 15 | imbi12d |  |-  ( x = A -> ( ( ( x ., x ) = Z -> x = .0. ) <-> ( ( A ., A ) = Z -> A = .0. ) ) ) | 
						
							| 17 | 16 | rspccva |  |-  ( ( A. x e. V ( ( x ., x ) = Z -> x = .0. ) /\ A e. V ) -> ( ( A ., A ) = Z -> A = .0. ) ) | 
						
							| 18 | 11 17 | sylan |  |-  ( ( W e. PreHil /\ A e. V ) -> ( ( A ., A ) = Z -> A = .0. ) ) | 
						
							| 19 | 1 2 3 4 5 | ip0l |  |-  ( ( W e. PreHil /\ A e. V ) -> ( .0. ., A ) = Z ) | 
						
							| 20 |  | oveq1 |  |-  ( A = .0. -> ( A ., A ) = ( .0. ., A ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( A = .0. -> ( ( A ., A ) = Z <-> ( .0. ., A ) = Z ) ) | 
						
							| 22 | 19 21 | syl5ibrcom |  |-  ( ( W e. PreHil /\ A e. V ) -> ( A = .0. -> ( A ., A ) = Z ) ) | 
						
							| 23 | 18 22 | impbid |  |-  ( ( W e. PreHil /\ A e. V ) -> ( ( A ., A ) = Z <-> A = .0. ) ) |