Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipffval.1 | |- V = ( Base ` W ) |
|
ipffval.2 | |- ., = ( .i ` W ) |
||
ipffval.3 | |- .x. = ( .if ` W ) |
||
Assertion | ipfeq | |- ( ., Fn ( V X. V ) -> .x. = ., ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipffval.1 | |- V = ( Base ` W ) |
|
2 | ipffval.2 | |- ., = ( .i ` W ) |
|
3 | ipffval.3 | |- .x. = ( .if ` W ) |
|
4 | 1 2 3 | ipffval | |- .x. = ( x e. V , y e. V |-> ( x ., y ) ) |
5 | fnov | |- ( ., Fn ( V X. V ) <-> ., = ( x e. V , y e. V |-> ( x ., y ) ) ) |
|
6 | 5 | biimpi | |- ( ., Fn ( V X. V ) -> ., = ( x e. V , y e. V |-> ( x ., y ) ) ) |
7 | 4 6 | eqtr4id | |- ( ., Fn ( V X. V ) -> .x. = ., ) |