Description: The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipffn.1 | |- V = ( Base ` W ) | |
| ipffn.2 | |- ., = ( .if ` W ) | ||
| Assertion | ipffn | |- ., Fn ( V X. V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ipffn.1 | |- V = ( Base ` W ) | |
| 2 | ipffn.2 | |- ., = ( .if ` W ) | |
| 3 | eqid | |- ( .i ` W ) = ( .i ` W ) | |
| 4 | 1 3 2 | ipffval | |- ., = ( x e. V , y e. V |-> ( x ( .i ` W ) y ) ) | 
| 5 | ovex | |- ( x ( .i ` W ) y ) e. _V | |
| 6 | 4 5 | fnmpoi | |- ., Fn ( V X. V ) |