| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipffval.1 |  |-  V = ( Base ` W ) | 
						
							| 2 |  | ipffval.2 |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | ipffval.3 |  |-  .x. = ( .if ` W ) | 
						
							| 4 |  | fveq2 |  |-  ( g = W -> ( Base ` g ) = ( Base ` W ) ) | 
						
							| 5 | 4 1 | eqtr4di |  |-  ( g = W -> ( Base ` g ) = V ) | 
						
							| 6 |  | fveq2 |  |-  ( g = W -> ( .i ` g ) = ( .i ` W ) ) | 
						
							| 7 | 6 2 | eqtr4di |  |-  ( g = W -> ( .i ` g ) = ., ) | 
						
							| 8 | 7 | oveqd |  |-  ( g = W -> ( x ( .i ` g ) y ) = ( x ., y ) ) | 
						
							| 9 | 5 5 8 | mpoeq123dv |  |-  ( g = W -> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( .i ` g ) y ) ) = ( x e. V , y e. V |-> ( x ., y ) ) ) | 
						
							| 10 |  | df-ipf |  |-  .if = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( .i ` g ) y ) ) ) | 
						
							| 11 | 1 | fvexi |  |-  V e. _V | 
						
							| 12 | 2 | fvexi |  |-  ., e. _V | 
						
							| 13 | 12 | rnex |  |-  ran ., e. _V | 
						
							| 14 |  | p0ex |  |-  { (/) } e. _V | 
						
							| 15 | 13 14 | unex |  |-  ( ran ., u. { (/) } ) e. _V | 
						
							| 16 |  | df-ov |  |-  ( x ., y ) = ( ., ` <. x , y >. ) | 
						
							| 17 |  | fvrn0 |  |-  ( ., ` <. x , y >. ) e. ( ran ., u. { (/) } ) | 
						
							| 18 | 16 17 | eqeltri |  |-  ( x ., y ) e. ( ran ., u. { (/) } ) | 
						
							| 19 | 18 | rgen2w |  |-  A. x e. V A. y e. V ( x ., y ) e. ( ran ., u. { (/) } ) | 
						
							| 20 | 11 11 15 19 | mpoexw |  |-  ( x e. V , y e. V |-> ( x ., y ) ) e. _V | 
						
							| 21 | 9 10 20 | fvmpt |  |-  ( W e. _V -> ( .if ` W ) = ( x e. V , y e. V |-> ( x ., y ) ) ) | 
						
							| 22 |  | fvprc |  |-  ( -. W e. _V -> ( .if ` W ) = (/) ) | 
						
							| 23 |  | fvprc |  |-  ( -. W e. _V -> ( Base ` W ) = (/) ) | 
						
							| 24 | 1 23 | eqtrid |  |-  ( -. W e. _V -> V = (/) ) | 
						
							| 25 | 24 | olcd |  |-  ( -. W e. _V -> ( V = (/) \/ V = (/) ) ) | 
						
							| 26 |  | 0mpo0 |  |-  ( ( V = (/) \/ V = (/) ) -> ( x e. V , y e. V |-> ( x ., y ) ) = (/) ) | 
						
							| 27 | 25 26 | syl |  |-  ( -. W e. _V -> ( x e. V , y e. V |-> ( x ., y ) ) = (/) ) | 
						
							| 28 | 22 27 | eqtr4d |  |-  ( -. W e. _V -> ( .if ` W ) = ( x e. V , y e. V |-> ( x ., y ) ) ) | 
						
							| 29 | 21 28 | pm2.61i |  |-  ( .if ` W ) = ( x e. V , y e. V |-> ( x ., y ) ) | 
						
							| 30 | 3 29 | eqtri |  |-  .x. = ( x e. V , y e. V |-> ( x ., y ) ) |