Metamath Proof Explorer


Theorem ipfval

Description: The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses ipffval.1
|- V = ( Base ` W )
ipffval.2
|- ., = ( .i ` W )
ipffval.3
|- .x. = ( .if ` W )
Assertion ipfval
|- ( ( X e. V /\ Y e. V ) -> ( X .x. Y ) = ( X ., Y ) )

Proof

Step Hyp Ref Expression
1 ipffval.1
 |-  V = ( Base ` W )
2 ipffval.2
 |-  ., = ( .i ` W )
3 ipffval.3
 |-  .x. = ( .if ` W )
4 oveq12
 |-  ( ( x = X /\ y = Y ) -> ( x ., y ) = ( X ., Y ) )
5 1 2 3 ipffval
 |-  .x. = ( x e. V , y e. V |-> ( x ., y ) )
6 ovex
 |-  ( X ., Y ) e. _V
7 4 5 6 ovmpoa
 |-  ( ( X e. V /\ Y e. V ) -> ( X .x. Y ) = ( X ., Y ) )