Description: The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipffval.1 | |- V = ( Base ` W ) |
|
ipffval.2 | |- ., = ( .i ` W ) |
||
ipffval.3 | |- .x. = ( .if ` W ) |
||
Assertion | ipfval | |- ( ( X e. V /\ Y e. V ) -> ( X .x. Y ) = ( X ., Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipffval.1 | |- V = ( Base ` W ) |
|
2 | ipffval.2 | |- ., = ( .i ` W ) |
|
3 | ipffval.3 | |- .x. = ( .if ` W ) |
|
4 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x ., y ) = ( X ., Y ) ) |
|
5 | 1 2 3 | ipffval | |- .x. = ( x e. V , y e. V |-> ( x ., y ) ) |
6 | ovex | |- ( X ., Y ) e. _V |
|
7 | 4 5 6 | ovmpoa | |- ( ( X e. V /\ Y e. V ) -> ( X .x. Y ) = ( X ., Y ) ) |