Metamath Proof Explorer


Theorem ipge0

Description: The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses reipcl.v
|- V = ( Base ` W )
reipcl.h
|- ., = ( .i ` W )
Assertion ipge0
|- ( ( W e. CPreHil /\ A e. V ) -> 0 <_ ( A ., A ) )

Proof

Step Hyp Ref Expression
1 reipcl.v
 |-  V = ( Base ` W )
2 reipcl.h
 |-  ., = ( .i ` W )
3 cphngp
 |-  ( W e. CPreHil -> W e. NrmGrp )
4 eqid
 |-  ( norm ` W ) = ( norm ` W )
5 1 4 nmcl
 |-  ( ( W e. NrmGrp /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR )
6 3 5 sylan
 |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR )
7 6 sqge0d
 |-  ( ( W e. CPreHil /\ A e. V ) -> 0 <_ ( ( ( norm ` W ) ` A ) ^ 2 ) )
8 1 2 4 nmsq
 |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( ( norm ` W ) ` A ) ^ 2 ) = ( A ., A ) )
9 7 8 breqtrd
 |-  ( ( W e. CPreHil /\ A e. V ) -> 0 <_ ( A ., A ) )