Step |
Hyp |
Ref |
Expression |
1 |
|
reipcl.v |
|- V = ( Base ` W ) |
2 |
|
reipcl.h |
|- ., = ( .i ` W ) |
3 |
|
cphngp |
|- ( W e. CPreHil -> W e. NrmGrp ) |
4 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
5 |
1 4
|
nmcl |
|- ( ( W e. NrmGrp /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR ) |
6 |
3 5
|
sylan |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR ) |
7 |
6
|
sqge0d |
|- ( ( W e. CPreHil /\ A e. V ) -> 0 <_ ( ( ( norm ` W ) ` A ) ^ 2 ) ) |
8 |
1 2 4
|
nmsq |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( ( norm ` W ) ` A ) ^ 2 ) = ( A ., A ) ) |
9 |
7 8
|
breqtrd |
|- ( ( W e. CPreHil /\ A e. V ) -> 0 <_ ( A ., A ) ) |