| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipid.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | ipid.6 |  |-  N = ( normCV ` U ) | 
						
							| 3 |  | ipid.7 |  |-  P = ( .iOLD ` U ) | 
						
							| 4 |  | eqid |  |-  ( +v ` U ) = ( +v ` U ) | 
						
							| 5 |  | eqid |  |-  ( .sOLD ` U ) = ( .sOLD ` U ) | 
						
							| 6 | 1 4 5 2 3 | ipval2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( A P A ) = ( ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) | 
						
							| 7 | 6 | 3anidm23 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) | 
						
							| 8 | 1 4 5 | nv2 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) A ) = ( 2 ( .sOLD ` U ) A ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) A ) ) = ( N ` ( 2 ( .sOLD ` U ) A ) ) ) | 
						
							| 10 |  | 2re |  |-  2 e. RR | 
						
							| 11 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 12 | 10 11 | pm3.2i |  |-  ( 2 e. RR /\ 0 <_ 2 ) | 
						
							| 13 | 1 5 2 | nvsge0 |  |-  ( ( U e. NrmCVec /\ ( 2 e. RR /\ 0 <_ 2 ) /\ A e. X ) -> ( N ` ( 2 ( .sOLD ` U ) A ) ) = ( 2 x. ( N ` A ) ) ) | 
						
							| 14 | 12 13 | mp3an2 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( 2 ( .sOLD ` U ) A ) ) = ( 2 x. ( N ` A ) ) ) | 
						
							| 15 | 9 14 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) A ) ) = ( 2 x. ( N ` A ) ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) = ( ( 2 x. ( N ` A ) ) ^ 2 ) ) | 
						
							| 17 | 1 2 | nvcl |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. CC ) | 
						
							| 19 |  | 2cn |  |-  2 e. CC | 
						
							| 20 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 21 |  | mulexp |  |-  ( ( 2 e. CC /\ ( N ` A ) e. CC /\ 2 e. NN0 ) -> ( ( 2 x. ( N ` A ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 22 | 19 20 21 | mp3an13 |  |-  ( ( N ` A ) e. CC -> ( ( 2 x. ( N ` A ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 23 | 18 22 | syl |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 2 x. ( N ` A ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 24 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 25 | 24 | oveq1i |  |-  ( ( 2 ^ 2 ) x. ( ( N ` A ) ^ 2 ) ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) | 
						
							| 26 | 23 25 | eqtrdi |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 2 x. ( N ` A ) ) ^ 2 ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 27 | 16 26 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 28 |  | eqid |  |-  ( 0vec ` U ) = ( 0vec ` U ) | 
						
							| 29 | 1 4 5 28 | nvrinv |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) = ( 0vec ` U ) ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) = ( N ` ( 0vec ` U ) ) ) | 
						
							| 31 | 28 2 | nvz0 |  |-  ( U e. NrmCVec -> ( N ` ( 0vec ` U ) ) = 0 ) | 
						
							| 32 | 31 | adantr |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( 0vec ` U ) ) = 0 ) | 
						
							| 33 | 30 32 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) = 0 ) | 
						
							| 34 | 33 | sq0id |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) = 0 ) | 
						
							| 35 | 27 34 | oveq12d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = ( ( 4 x. ( ( N ` A ) ^ 2 ) ) - 0 ) ) | 
						
							| 36 |  | 4cn |  |-  4 e. CC | 
						
							| 37 | 18 | sqcld |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) ^ 2 ) e. CC ) | 
						
							| 38 |  | mulcl |  |-  ( ( 4 e. CC /\ ( ( N ` A ) ^ 2 ) e. CC ) -> ( 4 x. ( ( N ` A ) ^ 2 ) ) e. CC ) | 
						
							| 39 | 36 37 38 | sylancr |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( 4 x. ( ( N ` A ) ^ 2 ) ) e. CC ) | 
						
							| 40 | 39 | subid1d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) - 0 ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 41 | 35 40 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 42 |  | 1re |  |-  1 e. RR | 
						
							| 43 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 44 |  | absreim |  |-  ( ( 1 e. RR /\ -u 1 e. RR ) -> ( abs ` ( 1 + ( _i x. -u 1 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( -u 1 ^ 2 ) ) ) ) | 
						
							| 45 | 42 43 44 | mp2an |  |-  ( abs ` ( 1 + ( _i x. -u 1 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( -u 1 ^ 2 ) ) ) | 
						
							| 46 |  | ax-icn |  |-  _i e. CC | 
						
							| 47 |  | ax-1cn |  |-  1 e. CC | 
						
							| 48 | 46 47 | mulneg2i |  |-  ( _i x. -u 1 ) = -u ( _i x. 1 ) | 
						
							| 49 | 46 | mulridi |  |-  ( _i x. 1 ) = _i | 
						
							| 50 | 49 | negeqi |  |-  -u ( _i x. 1 ) = -u _i | 
						
							| 51 | 48 50 | eqtri |  |-  ( _i x. -u 1 ) = -u _i | 
						
							| 52 | 51 | oveq2i |  |-  ( 1 + ( _i x. -u 1 ) ) = ( 1 + -u _i ) | 
						
							| 53 | 52 | fveq2i |  |-  ( abs ` ( 1 + ( _i x. -u 1 ) ) ) = ( abs ` ( 1 + -u _i ) ) | 
						
							| 54 |  | sqneg |  |-  ( 1 e. CC -> ( -u 1 ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 55 | 47 54 | ax-mp |  |-  ( -u 1 ^ 2 ) = ( 1 ^ 2 ) | 
						
							| 56 | 55 | oveq2i |  |-  ( ( 1 ^ 2 ) + ( -u 1 ^ 2 ) ) = ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) | 
						
							| 57 | 56 | fveq2i |  |-  ( sqrt ` ( ( 1 ^ 2 ) + ( -u 1 ^ 2 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) ) | 
						
							| 58 | 45 53 57 | 3eqtr3i |  |-  ( abs ` ( 1 + -u _i ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) ) | 
						
							| 59 |  | absreim |  |-  ( ( 1 e. RR /\ 1 e. RR ) -> ( abs ` ( 1 + ( _i x. 1 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) ) ) | 
						
							| 60 | 42 42 59 | mp2an |  |-  ( abs ` ( 1 + ( _i x. 1 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) ) | 
						
							| 61 | 49 | oveq2i |  |-  ( 1 + ( _i x. 1 ) ) = ( 1 + _i ) | 
						
							| 62 | 61 | fveq2i |  |-  ( abs ` ( 1 + ( _i x. 1 ) ) ) = ( abs ` ( 1 + _i ) ) | 
						
							| 63 | 58 60 62 | 3eqtr2i |  |-  ( abs ` ( 1 + -u _i ) ) = ( abs ` ( 1 + _i ) ) | 
						
							| 64 | 63 | oveq1i |  |-  ( ( abs ` ( 1 + -u _i ) ) x. ( N ` A ) ) = ( ( abs ` ( 1 + _i ) ) x. ( N ` A ) ) | 
						
							| 65 |  | negicn |  |-  -u _i e. CC | 
						
							| 66 | 47 65 | addcli |  |-  ( 1 + -u _i ) e. CC | 
						
							| 67 | 1 5 2 | nvs |  |-  ( ( U e. NrmCVec /\ ( 1 + -u _i ) e. CC /\ A e. X ) -> ( N ` ( ( 1 + -u _i ) ( .sOLD ` U ) A ) ) = ( ( abs ` ( 1 + -u _i ) ) x. ( N ` A ) ) ) | 
						
							| 68 | 66 67 | mp3an2 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + -u _i ) ( .sOLD ` U ) A ) ) = ( ( abs ` ( 1 + -u _i ) ) x. ( N ` A ) ) ) | 
						
							| 69 | 47 46 | addcli |  |-  ( 1 + _i ) e. CC | 
						
							| 70 | 1 5 2 | nvs |  |-  ( ( U e. NrmCVec /\ ( 1 + _i ) e. CC /\ A e. X ) -> ( N ` ( ( 1 + _i ) ( .sOLD ` U ) A ) ) = ( ( abs ` ( 1 + _i ) ) x. ( N ` A ) ) ) | 
						
							| 71 | 69 70 | mp3an2 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + _i ) ( .sOLD ` U ) A ) ) = ( ( abs ` ( 1 + _i ) ) x. ( N ` A ) ) ) | 
						
							| 72 | 64 68 71 | 3eqtr4a |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + -u _i ) ( .sOLD ` U ) A ) ) = ( N ` ( ( 1 + _i ) ( .sOLD ` U ) A ) ) ) | 
						
							| 73 | 1 4 5 | nvdir |  |-  ( ( U e. NrmCVec /\ ( 1 e. CC /\ -u _i e. CC /\ A e. X ) ) -> ( ( 1 + -u _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) | 
						
							| 74 | 47 73 | mp3anr1 |  |-  ( ( U e. NrmCVec /\ ( -u _i e. CC /\ A e. X ) ) -> ( ( 1 + -u _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) | 
						
							| 75 | 65 74 | mpanr1 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + -u _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) | 
						
							| 76 | 1 5 | nvsid |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( 1 ( .sOLD ` U ) A ) = A ) | 
						
							| 77 | 76 | oveq1d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) = ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) | 
						
							| 78 | 75 77 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + -u _i ) ( .sOLD ` U ) A ) = ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) | 
						
							| 79 | 78 | fveq2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + -u _i ) ( .sOLD ` U ) A ) ) = ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ) | 
						
							| 80 | 1 4 5 | nvdir |  |-  ( ( U e. NrmCVec /\ ( 1 e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( 1 + _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) | 
						
							| 81 | 47 80 | mp3anr1 |  |-  ( ( U e. NrmCVec /\ ( _i e. CC /\ A e. X ) ) -> ( ( 1 + _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) | 
						
							| 82 | 46 81 | mpanr1 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) | 
						
							| 83 | 76 | oveq1d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) = ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) | 
						
							| 84 | 82 83 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + _i ) ( .sOLD ` U ) A ) = ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) | 
						
							| 85 | 84 | fveq2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + _i ) ( .sOLD ` U ) A ) ) = ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ) | 
						
							| 86 | 72 79 85 | 3eqtr3d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) = ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ) | 
						
							| 87 | 86 | oveq1d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) = ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) | 
						
							| 88 | 87 | oveq2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) | 
						
							| 89 | 1 4 5 2 3 | ipval2lem4 |  |-  ( ( ( U e. NrmCVec /\ A e. X /\ A e. X ) /\ _i e. CC ) -> ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) e. CC ) | 
						
							| 90 | 46 89 | mpan2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) e. CC ) | 
						
							| 91 | 90 | 3anidm23 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) e. CC ) | 
						
							| 92 | 91 | subidd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = 0 ) | 
						
							| 93 | 88 92 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = 0 ) | 
						
							| 94 | 93 | oveq2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) = ( _i x. 0 ) ) | 
						
							| 95 |  | it0e0 |  |-  ( _i x. 0 ) = 0 | 
						
							| 96 | 94 95 | eqtrdi |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) = 0 ) | 
						
							| 97 | 41 96 | oveq12d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) = ( ( 4 x. ( ( N ` A ) ^ 2 ) ) + 0 ) ) | 
						
							| 98 | 39 | addridd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) + 0 ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 99 | 97 98 | eqtr2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( 4 x. ( ( N ` A ) ^ 2 ) ) = ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) ) | 
						
							| 100 | 99 | oveq1d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) / 4 ) = ( ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) | 
						
							| 101 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 102 |  | divcan3 |  |-  ( ( ( ( N ` A ) ^ 2 ) e. CC /\ 4 e. CC /\ 4 =/= 0 ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) / 4 ) = ( ( N ` A ) ^ 2 ) ) | 
						
							| 103 | 36 101 102 | mp3an23 |  |-  ( ( ( N ` A ) ^ 2 ) e. CC -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) / 4 ) = ( ( N ` A ) ^ 2 ) ) | 
						
							| 104 | 37 103 | syl |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) / 4 ) = ( ( N ` A ) ^ 2 ) ) | 
						
							| 105 | 7 100 104 | 3eqtr2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( N ` A ) ^ 2 ) ) |