Step |
Hyp |
Ref |
Expression |
1 |
|
ipid.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ipid.6 |
|- N = ( normCV ` U ) |
3 |
|
ipid.7 |
|- P = ( .iOLD ` U ) |
4 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
5 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
6 |
1 4 5 2 3
|
ipval2 |
|- ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( A P A ) = ( ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
7 |
6
|
3anidm23 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
8 |
1 4 5
|
nv2 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) A ) = ( 2 ( .sOLD ` U ) A ) ) |
9 |
8
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) A ) ) = ( N ` ( 2 ( .sOLD ` U ) A ) ) ) |
10 |
|
2re |
|- 2 e. RR |
11 |
|
0le2 |
|- 0 <_ 2 |
12 |
10 11
|
pm3.2i |
|- ( 2 e. RR /\ 0 <_ 2 ) |
13 |
1 5 2
|
nvsge0 |
|- ( ( U e. NrmCVec /\ ( 2 e. RR /\ 0 <_ 2 ) /\ A e. X ) -> ( N ` ( 2 ( .sOLD ` U ) A ) ) = ( 2 x. ( N ` A ) ) ) |
14 |
12 13
|
mp3an2 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( 2 ( .sOLD ` U ) A ) ) = ( 2 x. ( N ` A ) ) ) |
15 |
9 14
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) A ) ) = ( 2 x. ( N ` A ) ) ) |
16 |
15
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) = ( ( 2 x. ( N ` A ) ) ^ 2 ) ) |
17 |
1 2
|
nvcl |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
18 |
17
|
recnd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. CC ) |
19 |
|
2cn |
|- 2 e. CC |
20 |
|
2nn0 |
|- 2 e. NN0 |
21 |
|
mulexp |
|- ( ( 2 e. CC /\ ( N ` A ) e. CC /\ 2 e. NN0 ) -> ( ( 2 x. ( N ` A ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` A ) ^ 2 ) ) ) |
22 |
19 20 21
|
mp3an13 |
|- ( ( N ` A ) e. CC -> ( ( 2 x. ( N ` A ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` A ) ^ 2 ) ) ) |
23 |
18 22
|
syl |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 2 x. ( N ` A ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` A ) ^ 2 ) ) ) |
24 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
25 |
24
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( ( N ` A ) ^ 2 ) ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) |
26 |
23 25
|
eqtrdi |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 2 x. ( N ` A ) ) ^ 2 ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) |
27 |
16 26
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) |
28 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
29 |
1 4 5 28
|
nvrinv |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) = ( 0vec ` U ) ) |
30 |
29
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) = ( N ` ( 0vec ` U ) ) ) |
31 |
28 2
|
nvz0 |
|- ( U e. NrmCVec -> ( N ` ( 0vec ` U ) ) = 0 ) |
32 |
31
|
adantr |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( 0vec ` U ) ) = 0 ) |
33 |
30 32
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) = 0 ) |
34 |
33
|
sq0id |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) = 0 ) |
35 |
27 34
|
oveq12d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = ( ( 4 x. ( ( N ` A ) ^ 2 ) ) - 0 ) ) |
36 |
|
4cn |
|- 4 e. CC |
37 |
18
|
sqcld |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) ^ 2 ) e. CC ) |
38 |
|
mulcl |
|- ( ( 4 e. CC /\ ( ( N ` A ) ^ 2 ) e. CC ) -> ( 4 x. ( ( N ` A ) ^ 2 ) ) e. CC ) |
39 |
36 37 38
|
sylancr |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 4 x. ( ( N ` A ) ^ 2 ) ) e. CC ) |
40 |
39
|
subid1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) - 0 ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) |
41 |
35 40
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) |
42 |
|
1re |
|- 1 e. RR |
43 |
|
neg1rr |
|- -u 1 e. RR |
44 |
|
absreim |
|- ( ( 1 e. RR /\ -u 1 e. RR ) -> ( abs ` ( 1 + ( _i x. -u 1 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( -u 1 ^ 2 ) ) ) ) |
45 |
42 43 44
|
mp2an |
|- ( abs ` ( 1 + ( _i x. -u 1 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( -u 1 ^ 2 ) ) ) |
46 |
|
ax-icn |
|- _i e. CC |
47 |
|
ax-1cn |
|- 1 e. CC |
48 |
46 47
|
mulneg2i |
|- ( _i x. -u 1 ) = -u ( _i x. 1 ) |
49 |
46
|
mulid1i |
|- ( _i x. 1 ) = _i |
50 |
49
|
negeqi |
|- -u ( _i x. 1 ) = -u _i |
51 |
48 50
|
eqtri |
|- ( _i x. -u 1 ) = -u _i |
52 |
51
|
oveq2i |
|- ( 1 + ( _i x. -u 1 ) ) = ( 1 + -u _i ) |
53 |
52
|
fveq2i |
|- ( abs ` ( 1 + ( _i x. -u 1 ) ) ) = ( abs ` ( 1 + -u _i ) ) |
54 |
|
sqneg |
|- ( 1 e. CC -> ( -u 1 ^ 2 ) = ( 1 ^ 2 ) ) |
55 |
47 54
|
ax-mp |
|- ( -u 1 ^ 2 ) = ( 1 ^ 2 ) |
56 |
55
|
oveq2i |
|- ( ( 1 ^ 2 ) + ( -u 1 ^ 2 ) ) = ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) |
57 |
56
|
fveq2i |
|- ( sqrt ` ( ( 1 ^ 2 ) + ( -u 1 ^ 2 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) ) |
58 |
45 53 57
|
3eqtr3i |
|- ( abs ` ( 1 + -u _i ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) ) |
59 |
|
absreim |
|- ( ( 1 e. RR /\ 1 e. RR ) -> ( abs ` ( 1 + ( _i x. 1 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) ) ) |
60 |
42 42 59
|
mp2an |
|- ( abs ` ( 1 + ( _i x. 1 ) ) ) = ( sqrt ` ( ( 1 ^ 2 ) + ( 1 ^ 2 ) ) ) |
61 |
49
|
oveq2i |
|- ( 1 + ( _i x. 1 ) ) = ( 1 + _i ) |
62 |
61
|
fveq2i |
|- ( abs ` ( 1 + ( _i x. 1 ) ) ) = ( abs ` ( 1 + _i ) ) |
63 |
58 60 62
|
3eqtr2i |
|- ( abs ` ( 1 + -u _i ) ) = ( abs ` ( 1 + _i ) ) |
64 |
63
|
oveq1i |
|- ( ( abs ` ( 1 + -u _i ) ) x. ( N ` A ) ) = ( ( abs ` ( 1 + _i ) ) x. ( N ` A ) ) |
65 |
|
negicn |
|- -u _i e. CC |
66 |
47 65
|
addcli |
|- ( 1 + -u _i ) e. CC |
67 |
1 5 2
|
nvs |
|- ( ( U e. NrmCVec /\ ( 1 + -u _i ) e. CC /\ A e. X ) -> ( N ` ( ( 1 + -u _i ) ( .sOLD ` U ) A ) ) = ( ( abs ` ( 1 + -u _i ) ) x. ( N ` A ) ) ) |
68 |
66 67
|
mp3an2 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + -u _i ) ( .sOLD ` U ) A ) ) = ( ( abs ` ( 1 + -u _i ) ) x. ( N ` A ) ) ) |
69 |
47 46
|
addcli |
|- ( 1 + _i ) e. CC |
70 |
1 5 2
|
nvs |
|- ( ( U e. NrmCVec /\ ( 1 + _i ) e. CC /\ A e. X ) -> ( N ` ( ( 1 + _i ) ( .sOLD ` U ) A ) ) = ( ( abs ` ( 1 + _i ) ) x. ( N ` A ) ) ) |
71 |
69 70
|
mp3an2 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + _i ) ( .sOLD ` U ) A ) ) = ( ( abs ` ( 1 + _i ) ) x. ( N ` A ) ) ) |
72 |
64 68 71
|
3eqtr4a |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + -u _i ) ( .sOLD ` U ) A ) ) = ( N ` ( ( 1 + _i ) ( .sOLD ` U ) A ) ) ) |
73 |
1 4 5
|
nvdir |
|- ( ( U e. NrmCVec /\ ( 1 e. CC /\ -u _i e. CC /\ A e. X ) ) -> ( ( 1 + -u _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) |
74 |
47 73
|
mp3anr1 |
|- ( ( U e. NrmCVec /\ ( -u _i e. CC /\ A e. X ) ) -> ( ( 1 + -u _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) |
75 |
65 74
|
mpanr1 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + -u _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) |
76 |
1 5
|
nvsid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 ( .sOLD ` U ) A ) = A ) |
77 |
76
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) = ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) |
78 |
75 77
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + -u _i ) ( .sOLD ` U ) A ) = ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) |
79 |
78
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + -u _i ) ( .sOLD ` U ) A ) ) = ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ) |
80 |
1 4 5
|
nvdir |
|- ( ( U e. NrmCVec /\ ( 1 e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( 1 + _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) |
81 |
47 80
|
mp3anr1 |
|- ( ( U e. NrmCVec /\ ( _i e. CC /\ A e. X ) ) -> ( ( 1 + _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) |
82 |
46 81
|
mpanr1 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + _i ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) |
83 |
76
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) = ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) |
84 |
82 83
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + _i ) ( .sOLD ` U ) A ) = ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) |
85 |
84
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( ( 1 + _i ) ( .sOLD ` U ) A ) ) = ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ) |
86 |
72 79 85
|
3eqtr3d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) = ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ) |
87 |
86
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) = ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) |
88 |
87
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) |
89 |
1 4 5 2 3
|
ipval2lem4 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ A e. X ) /\ _i e. CC ) -> ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) e. CC ) |
90 |
46 89
|
mpan2 |
|- ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) e. CC ) |
91 |
90
|
3anidm23 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) e. CC ) |
92 |
91
|
subidd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = 0 ) |
93 |
88 92
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) = 0 ) |
94 |
93
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) = ( _i x. 0 ) ) |
95 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
96 |
94 95
|
eqtrdi |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) = 0 ) |
97 |
41 96
|
oveq12d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) = ( ( 4 x. ( ( N ` A ) ^ 2 ) ) + 0 ) ) |
98 |
39
|
addid1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) + 0 ) = ( 4 x. ( ( N ` A ) ^ 2 ) ) ) |
99 |
97 98
|
eqtr2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 4 x. ( ( N ` A ) ^ 2 ) ) = ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) ) |
100 |
99
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) / 4 ) = ( ( ( ( ( N ` ( A ( +v ` U ) A ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( N ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
101 |
|
4ne0 |
|- 4 =/= 0 |
102 |
|
divcan3 |
|- ( ( ( ( N ` A ) ^ 2 ) e. CC /\ 4 e. CC /\ 4 =/= 0 ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) / 4 ) = ( ( N ` A ) ^ 2 ) ) |
103 |
36 101 102
|
mp3an23 |
|- ( ( ( N ` A ) ^ 2 ) e. CC -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) / 4 ) = ( ( N ` A ) ^ 2 ) ) |
104 |
37 103
|
syl |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 4 x. ( ( N ` A ) ^ 2 ) ) / 4 ) = ( ( N ` A ) ^ 2 ) ) |
105 |
7 100 104
|
3eqtr2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( N ` A ) ^ 2 ) ) |