Metamath Proof Explorer


Theorem ipndxnbasendx

Description: The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024)

Ref Expression
Assertion ipndxnbasendx
|- ( .i ` ndx ) =/= ( Base ` ndx )

Proof

Step Hyp Ref Expression
1 1re
 |-  1 e. RR
2 1lt8
 |-  1 < 8
3 1 2 gtneii
 |-  8 =/= 1
4 ipndx
 |-  ( .i ` ndx ) = 8
5 basendx
 |-  ( Base ` ndx ) = 1
6 4 5 neeq12i
 |-  ( ( .i ` ndx ) =/= ( Base ` ndx ) <-> 8 =/= 1 )
7 3 6 mpbir
 |-  ( .i ` ndx ) =/= ( Base ` ndx )