| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipid.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | ipid.6 |  |-  N = ( normCV ` U ) | 
						
							| 3 |  | ipid.7 |  |-  P = ( .iOLD ` U ) | 
						
							| 4 | 1 2 3 | ipidsq |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( N ` A ) ^ 2 ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( sqrt ` ( A P A ) ) = ( sqrt ` ( ( N ` A ) ^ 2 ) ) ) | 
						
							| 6 | 1 2 | nvcl |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) | 
						
							| 7 | 1 2 | nvge0 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) | 
						
							| 8 | 6 7 | sqrtsqd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( sqrt ` ( ( N ` A ) ^ 2 ) ) = ( N ` A ) ) | 
						
							| 9 | 5 8 | eqtr2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) = ( sqrt ` ( A P A ) ) ) |