Step |
Hyp |
Ref |
Expression |
1 |
|
ipid.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ipid.6 |
|- N = ( normCV ` U ) |
3 |
|
ipid.7 |
|- P = ( .iOLD ` U ) |
4 |
1 2 3
|
ipidsq |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( N ` A ) ^ 2 ) ) |
5 |
4
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( sqrt ` ( A P A ) ) = ( sqrt ` ( ( N ` A ) ^ 2 ) ) ) |
6 |
1 2
|
nvcl |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
7 |
1 2
|
nvge0 |
|- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) |
8 |
6 7
|
sqrtsqd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( sqrt ` ( ( N ` A ) ^ 2 ) ) = ( N ` A ) ) |
9 |
5 8
|
eqtr2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) = ( sqrt ` ( A P A ) ) ) |