Step |
Hyp |
Ref |
Expression |
1 |
|
ipoval.i |
|- I = ( toInc ` F ) |
2 |
|
ipostr |
|- ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) Struct <. 1 , ; 1 1 >. |
3 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
4 |
|
snsspr1 |
|- { <. ( Base ` ndx ) , F >. } C_ { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } |
5 |
|
ssun1 |
|- { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } C_ ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) |
6 |
4 5
|
sstri |
|- { <. ( Base ` ndx ) , F >. } C_ ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) |
7 |
2 3 6
|
strfv |
|- ( F e. V -> F = ( Base ` ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) ) |
8 |
|
eqid |
|- { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } |
9 |
1 8
|
ipoval |
|- ( F e. V -> I = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
10 |
9
|
fveq2d |
|- ( F e. V -> ( Base ` I ) = ( Base ` ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) ) |
11 |
7 10
|
eqtr4d |
|- ( F e. V -> F = ( Base ` I ) ) |