Step |
Hyp |
Ref |
Expression |
1 |
|
ipoglb0.i |
|- I = ( toInc ` F ) |
2 |
|
ipoglb0.g |
|- ( ph -> G = ( glb ` I ) ) |
3 |
|
ipoglb0.f |
|- ( ph -> U. F e. F ) |
4 |
|
uniexr |
|- ( U. F e. F -> F e. _V ) |
5 |
3 4
|
syl |
|- ( ph -> F e. _V ) |
6 |
|
0ss |
|- (/) C_ F |
7 |
6
|
a1i |
|- ( ph -> (/) C_ F ) |
8 |
|
ssv |
|- x C_ _V |
9 |
|
int0 |
|- |^| (/) = _V |
10 |
8 9
|
sseqtrri |
|- x C_ |^| (/) |
11 |
10
|
a1i |
|- ( x e. F -> x C_ |^| (/) ) |
12 |
11
|
rabeqc |
|- { x e. F | x C_ |^| (/) } = F |
13 |
12
|
unieqi |
|- U. { x e. F | x C_ |^| (/) } = U. F |
14 |
13
|
eqcomi |
|- U. F = U. { x e. F | x C_ |^| (/) } |
15 |
14
|
a1i |
|- ( ph -> U. F = U. { x e. F | x C_ |^| (/) } ) |
16 |
1 5 7 2 15 3
|
ipoglb |
|- ( ph -> ( G ` (/) ) = U. F ) |