| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipoglb0.i |  |-  I = ( toInc ` F ) | 
						
							| 2 |  | ipoglb0.g |  |-  ( ph -> G = ( glb ` I ) ) | 
						
							| 3 |  | ipoglb0.f |  |-  ( ph -> U. F e. F ) | 
						
							| 4 |  | uniexr |  |-  ( U. F e. F -> F e. _V ) | 
						
							| 5 | 3 4 | syl |  |-  ( ph -> F e. _V ) | 
						
							| 6 |  | 0ss |  |-  (/) C_ F | 
						
							| 7 | 6 | a1i |  |-  ( ph -> (/) C_ F ) | 
						
							| 8 |  | ssv |  |-  x C_ _V | 
						
							| 9 |  | int0 |  |-  |^| (/) = _V | 
						
							| 10 | 8 9 | sseqtrri |  |-  x C_ |^| (/) | 
						
							| 11 | 10 | a1i |  |-  ( x e. F -> x C_ |^| (/) ) | 
						
							| 12 | 11 | rabeqc |  |-  { x e. F | x C_ |^| (/) } = F | 
						
							| 13 | 12 | unieqi |  |-  U. { x e. F | x C_ |^| (/) } = U. F | 
						
							| 14 | 13 | eqcomi |  |-  U. F = U. { x e. F | x C_ |^| (/) } | 
						
							| 15 | 14 | a1i |  |-  ( ph -> U. F = U. { x e. F | x C_ |^| (/) } ) | 
						
							| 16 | 1 5 7 2 15 3 | ipoglb |  |-  ( ph -> ( G ` (/) ) = U. F ) |