Step |
Hyp |
Ref |
Expression |
1 |
|
ipoglb0.i |
|- I = ( toInc ` F ) |
2 |
|
ipolub0.u |
|- ( ph -> U = ( lub ` I ) ) |
3 |
|
ipolub0.f |
|- ( ph -> |^| F e. F ) |
4 |
|
ipolub0.v |
|- ( ph -> F e. V ) |
5 |
|
0ss |
|- (/) C_ F |
6 |
5
|
a1i |
|- ( ph -> (/) C_ F ) |
7 |
|
uni0 |
|- U. (/) = (/) |
8 |
|
0ss |
|- (/) C_ x |
9 |
7 8
|
eqsstri |
|- U. (/) C_ x |
10 |
9
|
a1i |
|- ( x e. F -> U. (/) C_ x ) |
11 |
10
|
rabeqc |
|- { x e. F | U. (/) C_ x } = F |
12 |
11
|
eqcomi |
|- F = { x e. F | U. (/) C_ x } |
13 |
12
|
inteqi |
|- |^| F = |^| { x e. F | U. (/) C_ x } |
14 |
13
|
a1i |
|- ( ph -> |^| F = |^| { x e. F | U. (/) C_ x } ) |
15 |
1 4 6 2 14 3
|
ipolub |
|- ( ph -> ( U ` (/) ) = |^| F ) |