| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | phllmhm.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | phllmhm.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | ip0l.z |  |-  Z = ( 0g ` F ) | 
						
							| 5 | 1 | phlsrng |  |-  ( W e. PreHil -> F e. *Ring ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> F e. *Ring ) | 
						
							| 7 |  | eqid |  |-  ( *rf ` F ) = ( *rf ` F ) | 
						
							| 8 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 9 | 7 8 | srngf1o |  |-  ( F e. *Ring -> ( *rf ` F ) : ( Base ` F ) -1-1-onto-> ( Base ` F ) ) | 
						
							| 10 |  | f1of1 |  |-  ( ( *rf ` F ) : ( Base ` F ) -1-1-onto-> ( Base ` F ) -> ( *rf ` F ) : ( Base ` F ) -1-1-> ( Base ` F ) ) | 
						
							| 11 | 6 9 10 | 3syl |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( *rf ` F ) : ( Base ` F ) -1-1-> ( Base ` F ) ) | 
						
							| 12 | 1 2 3 8 | ipcl |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` F ) ) | 
						
							| 13 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> W e. LMod ) | 
						
							| 15 | 1 8 4 | lmod0cl |  |-  ( W e. LMod -> Z e. ( Base ` F ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> Z e. ( Base ` F ) ) | 
						
							| 17 |  | f1fveq |  |-  ( ( ( *rf ` F ) : ( Base ` F ) -1-1-> ( Base ` F ) /\ ( ( A ., B ) e. ( Base ` F ) /\ Z e. ( Base ` F ) ) ) -> ( ( ( *rf ` F ) ` ( A ., B ) ) = ( ( *rf ` F ) ` Z ) <-> ( A ., B ) = Z ) ) | 
						
							| 18 | 11 12 16 17 | syl12anc |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( ( *rf ` F ) ` ( A ., B ) ) = ( ( *rf ` F ) ` Z ) <-> ( A ., B ) = Z ) ) | 
						
							| 19 |  | eqid |  |-  ( *r ` F ) = ( *r ` F ) | 
						
							| 20 | 8 19 7 | stafval |  |-  ( ( A ., B ) e. ( Base ` F ) -> ( ( *rf ` F ) ` ( A ., B ) ) = ( ( *r ` F ) ` ( A ., B ) ) ) | 
						
							| 21 | 12 20 | syl |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( *rf ` F ) ` ( A ., B ) ) = ( ( *r ` F ) ` ( A ., B ) ) ) | 
						
							| 22 | 1 2 3 19 | ipcj |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( *r ` F ) ` ( A ., B ) ) = ( B ., A ) ) | 
						
							| 23 | 21 22 | eqtrd |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( *rf ` F ) ` ( A ., B ) ) = ( B ., A ) ) | 
						
							| 24 | 8 19 7 | stafval |  |-  ( Z e. ( Base ` F ) -> ( ( *rf ` F ) ` Z ) = ( ( *r ` F ) ` Z ) ) | 
						
							| 25 | 16 24 | syl |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( *rf ` F ) ` Z ) = ( ( *r ` F ) ` Z ) ) | 
						
							| 26 | 19 4 | srng0 |  |-  ( F e. *Ring -> ( ( *r ` F ) ` Z ) = Z ) | 
						
							| 27 | 6 26 | syl |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( *r ` F ) ` Z ) = Z ) | 
						
							| 28 | 25 27 | eqtrd |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( *rf ` F ) ` Z ) = Z ) | 
						
							| 29 | 23 28 | eqeq12d |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( ( *rf ` F ) ` ( A ., B ) ) = ( ( *rf ` F ) ` Z ) <-> ( B ., A ) = Z ) ) | 
						
							| 30 | 18 29 | bitr3d |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = Z <-> ( B ., A ) = Z ) ) |