Step |
Hyp |
Ref |
Expression |
1 |
|
ipoval.i |
|- I = ( toInc ` F ) |
2 |
|
ipoval.l |
|- .<_ = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } |
3 |
|
elex |
|- ( F e. V -> F e. _V ) |
4 |
|
vex |
|- f e. _V |
5 |
4 4
|
xpex |
|- ( f X. f ) e. _V |
6 |
|
simpl |
|- ( ( { x , y } C_ f /\ x C_ y ) -> { x , y } C_ f ) |
7 |
|
vex |
|- x e. _V |
8 |
|
vex |
|- y e. _V |
9 |
7 8
|
prss |
|- ( ( x e. f /\ y e. f ) <-> { x , y } C_ f ) |
10 |
6 9
|
sylibr |
|- ( ( { x , y } C_ f /\ x C_ y ) -> ( x e. f /\ y e. f ) ) |
11 |
10
|
ssopab2i |
|- { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } C_ { <. x , y >. | ( x e. f /\ y e. f ) } |
12 |
|
df-xp |
|- ( f X. f ) = { <. x , y >. | ( x e. f /\ y e. f ) } |
13 |
11 12
|
sseqtrri |
|- { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } C_ ( f X. f ) |
14 |
5 13
|
ssexi |
|- { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } e. _V |
15 |
14
|
a1i |
|- ( f = F -> { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } e. _V ) |
16 |
|
sseq2 |
|- ( f = F -> ( { x , y } C_ f <-> { x , y } C_ F ) ) |
17 |
16
|
anbi1d |
|- ( f = F -> ( ( { x , y } C_ f /\ x C_ y ) <-> ( { x , y } C_ F /\ x C_ y ) ) ) |
18 |
17
|
opabbidv |
|- ( f = F -> { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) |
19 |
18 2
|
eqtr4di |
|- ( f = F -> { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } = .<_ ) |
20 |
|
simpl |
|- ( ( f = F /\ o = .<_ ) -> f = F ) |
21 |
20
|
opeq2d |
|- ( ( f = F /\ o = .<_ ) -> <. ( Base ` ndx ) , f >. = <. ( Base ` ndx ) , F >. ) |
22 |
|
simpr |
|- ( ( f = F /\ o = .<_ ) -> o = .<_ ) |
23 |
22
|
fveq2d |
|- ( ( f = F /\ o = .<_ ) -> ( ordTop ` o ) = ( ordTop ` .<_ ) ) |
24 |
23
|
opeq2d |
|- ( ( f = F /\ o = .<_ ) -> <. ( TopSet ` ndx ) , ( ordTop ` o ) >. = <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. ) |
25 |
21 24
|
preq12d |
|- ( ( f = F /\ o = .<_ ) -> { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } = { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } ) |
26 |
22
|
opeq2d |
|- ( ( f = F /\ o = .<_ ) -> <. ( le ` ndx ) , o >. = <. ( le ` ndx ) , .<_ >. ) |
27 |
|
id |
|- ( f = F -> f = F ) |
28 |
|
rabeq |
|- ( f = F -> { y e. f | ( y i^i x ) = (/) } = { y e. F | ( y i^i x ) = (/) } ) |
29 |
28
|
unieqd |
|- ( f = F -> U. { y e. f | ( y i^i x ) = (/) } = U. { y e. F | ( y i^i x ) = (/) } ) |
30 |
27 29
|
mpteq12dv |
|- ( f = F -> ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) = ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) ) |
31 |
30
|
adantr |
|- ( ( f = F /\ o = .<_ ) -> ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) = ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) ) |
32 |
31
|
opeq2d |
|- ( ( f = F /\ o = .<_ ) -> <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. = <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. ) |
33 |
26 32
|
preq12d |
|- ( ( f = F /\ o = .<_ ) -> { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } = { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) |
34 |
25 33
|
uneq12d |
|- ( ( f = F /\ o = .<_ ) -> ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
35 |
15 19 34
|
csbied2 |
|- ( f = F -> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
36 |
|
df-ipo |
|- toInc = ( f e. _V |-> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) ) |
37 |
|
prex |
|- { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } e. _V |
38 |
|
prex |
|- { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } e. _V |
39 |
37 38
|
unex |
|- ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) e. _V |
40 |
35 36 39
|
fvmpt |
|- ( F e. _V -> ( toInc ` F ) = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
41 |
1 40
|
eqtrid |
|- ( F e. _V -> I = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
42 |
3 41
|
syl |
|- ( F e. V -> I = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |