Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zprod.1 | |- Z = ( ZZ>= ` M ) |
|
zprod.2 | |- ( ph -> M e. ZZ ) |
||
zprod.3 | |- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
||
iprod.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
||
iprod.5 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
||
Assertion | iprod | |- ( ph -> prod_ k e. Z B = ( ~~> ` seq M ( x. , F ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zprod.1 | |- Z = ( ZZ>= ` M ) |
|
2 | zprod.2 | |- ( ph -> M e. ZZ ) |
|
3 | zprod.3 | |- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
|
4 | iprod.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
|
5 | iprod.5 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
|
6 | ssidd | |- ( ph -> Z C_ Z ) |
|
7 | iftrue | |- ( k e. Z -> if ( k e. Z , B , 1 ) = B ) |
|
8 | 7 | adantl | |- ( ( ph /\ k e. Z ) -> if ( k e. Z , B , 1 ) = B ) |
9 | 4 8 | eqtr4d | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. Z , B , 1 ) ) |
10 | 1 2 3 6 9 5 | zprod | |- ( ph -> prod_ k e. Z B = ( ~~> ` seq M ( x. , F ) ) ) |