Step |
Hyp |
Ref |
Expression |
1 |
|
iprodmul.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iprodmul.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
iprodmul.3 |
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
4 |
|
iprodmul.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
5 |
|
iprodmul.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
6 |
|
iprodmul.6 |
|- ( ph -> E. m e. Z E. z ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) |
7 |
|
iprodmul.7 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = B ) |
8 |
|
iprodmul.8 |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
9 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
10 |
7 8
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
11 |
|
fveq2 |
|- ( a = k -> ( F ` a ) = ( F ` k ) ) |
12 |
|
fveq2 |
|- ( a = k -> ( G ` a ) = ( G ` k ) ) |
13 |
11 12
|
oveq12d |
|- ( a = k -> ( ( F ` a ) x. ( G ` a ) ) = ( ( F ` k ) x. ( G ` k ) ) ) |
14 |
|
eqid |
|- ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) = ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) |
15 |
|
ovex |
|- ( ( F ` k ) x. ( G ` k ) ) e. _V |
16 |
13 14 15
|
fvmpt |
|- ( k e. Z -> ( ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ k e. Z ) -> ( ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
18 |
1 3 9 6 10 17
|
ntrivcvgmul |
|- ( ph -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) ) |
19 |
|
fveq2 |
|- ( m = a -> ( F ` m ) = ( F ` a ) ) |
20 |
|
fveq2 |
|- ( m = a -> ( G ` m ) = ( G ` a ) ) |
21 |
19 20
|
oveq12d |
|- ( m = a -> ( ( F ` m ) x. ( G ` m ) ) = ( ( F ` a ) x. ( G ` a ) ) ) |
22 |
21
|
cbvmptv |
|- ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) = ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) |
23 |
|
seqeq3 |
|- ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) = ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) -> seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) = seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ) |
24 |
22 23
|
ax-mp |
|- seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) = seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) |
25 |
24
|
breq1i |
|- ( seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w <-> seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) |
26 |
25
|
anbi2i |
|- ( ( w =/= 0 /\ seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w ) <-> ( w =/= 0 /\ seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) ) |
27 |
26
|
exbii |
|- ( E. w ( w =/= 0 /\ seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w ) <-> E. w ( w =/= 0 /\ seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) ) |
28 |
27
|
rexbii |
|- ( E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w ) <-> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) ) |
29 |
18 28
|
sylibr |
|- ( ph -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w ) ) |
30 |
|
eqid |
|- ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) = ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) |
31 |
|
fveq2 |
|- ( m = k -> ( F ` m ) = ( F ` k ) ) |
32 |
|
fveq2 |
|- ( m = k -> ( G ` m ) = ( G ` k ) ) |
33 |
31 32
|
oveq12d |
|- ( m = k -> ( ( F ` m ) x. ( G ` m ) ) = ( ( F ` k ) x. ( G ` k ) ) ) |
34 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
35 |
9 10
|
mulcld |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) x. ( G ` k ) ) e. CC ) |
36 |
30 33 34 35
|
fvmptd3 |
|- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
37 |
4 7
|
oveq12d |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) x. ( G ` k ) ) = ( A x. B ) ) |
38 |
36 37
|
eqtrd |
|- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ` k ) = ( A x. B ) ) |
39 |
5 8
|
mulcld |
|- ( ( ph /\ k e. Z ) -> ( A x. B ) e. CC ) |
40 |
1 2 3 4 5
|
iprodclim2 |
|- ( ph -> seq M ( x. , F ) ~~> prod_ k e. Z A ) |
41 |
|
seqex |
|- seq M ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) e. _V |
42 |
41
|
a1i |
|- ( ph -> seq M ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) e. _V ) |
43 |
1 2 6 7 8
|
iprodclim2 |
|- ( ph -> seq M ( x. , G ) ~~> prod_ k e. Z B ) |
44 |
1 2 9
|
prodf |
|- ( ph -> seq M ( x. , F ) : Z --> CC ) |
45 |
44
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( x. , F ) ` j ) e. CC ) |
46 |
1 2 10
|
prodf |
|- ( ph -> seq M ( x. , G ) : Z --> CC ) |
47 |
46
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( x. , G ) ` j ) e. CC ) |
48 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
49 |
48 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
50 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
51 |
50 1
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
52 |
51 9
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
53 |
52
|
adantlr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
54 |
51 10
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( G ` k ) e. CC ) |
55 |
54
|
adantlr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( G ` k ) e. CC ) |
56 |
36
|
adantlr |
|- ( ( ( ph /\ j e. Z ) /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
57 |
51 56
|
sylan2 |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
58 |
49 53 55 57
|
prodfmul |
|- ( ( ph /\ j e. Z ) -> ( seq M ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ` j ) = ( ( seq M ( x. , F ) ` j ) x. ( seq M ( x. , G ) ` j ) ) ) |
59 |
1 2 40 42 43 45 47 58
|
climmul |
|- ( ph -> seq M ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> ( prod_ k e. Z A x. prod_ k e. Z B ) ) |
60 |
1 2 29 38 39 59
|
iprodclim |
|- ( ph -> prod_ k e. Z ( A x. B ) = ( prod_ k e. Z A x. prod_ k e. Z B ) ) |