Description: Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zprodn0.1 | |- Z = ( ZZ>= ` M ) | |
| zprodn0.2 | |- ( ph -> M e. ZZ ) | ||
| zprodn0.3 | |- ( ph -> X =/= 0 ) | ||
| zprodn0.4 | |- ( ph -> seq M ( x. , F ) ~~> X ) | ||
| iprodn0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) | ||
| iprodn0.6 | |- ( ( ph /\ k e. Z ) -> B e. CC ) | ||
| Assertion | iprodn0 | |- ( ph -> prod_ k e. Z B = X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zprodn0.1 | |- Z = ( ZZ>= ` M ) | |
| 2 | zprodn0.2 | |- ( ph -> M e. ZZ ) | |
| 3 | zprodn0.3 | |- ( ph -> X =/= 0 ) | |
| 4 | zprodn0.4 | |- ( ph -> seq M ( x. , F ) ~~> X ) | |
| 5 | iprodn0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) | |
| 6 | iprodn0.6 | |- ( ( ph /\ k e. Z ) -> B e. CC ) | |
| 7 | ssidd | |- ( ph -> Z C_ Z ) | |
| 8 | iftrue | |- ( k e. Z -> if ( k e. Z , B , 1 ) = B ) | |
| 9 | 8 | adantl | |- ( ( ph /\ k e. Z ) -> if ( k e. Z , B , 1 ) = B ) | 
| 10 | 5 9 | eqtr4d | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. Z , B , 1 ) ) | 
| 11 | 1 2 3 4 7 10 6 | zprodn0 | |- ( ph -> prod_ k e. Z B = X ) |