Metamath Proof Explorer


Theorem iprodn0

Description: Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017)

Ref Expression
Hypotheses zprodn0.1
|- Z = ( ZZ>= ` M )
zprodn0.2
|- ( ph -> M e. ZZ )
zprodn0.3
|- ( ph -> X =/= 0 )
zprodn0.4
|- ( ph -> seq M ( x. , F ) ~~> X )
iprodn0.5
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B )
iprodn0.6
|- ( ( ph /\ k e. Z ) -> B e. CC )
Assertion iprodn0
|- ( ph -> prod_ k e. Z B = X )

Proof

Step Hyp Ref Expression
1 zprodn0.1
 |-  Z = ( ZZ>= ` M )
2 zprodn0.2
 |-  ( ph -> M e. ZZ )
3 zprodn0.3
 |-  ( ph -> X =/= 0 )
4 zprodn0.4
 |-  ( ph -> seq M ( x. , F ) ~~> X )
5 iprodn0.5
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = B )
6 iprodn0.6
 |-  ( ( ph /\ k e. Z ) -> B e. CC )
7 ssidd
 |-  ( ph -> Z C_ Z )
8 iftrue
 |-  ( k e. Z -> if ( k e. Z , B , 1 ) = B )
9 8 adantl
 |-  ( ( ph /\ k e. Z ) -> if ( k e. Z , B , 1 ) = B )
10 5 9 eqtr4d
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. Z , B , 1 ) )
11 1 2 3 4 7 10 6 zprodn0
 |-  ( ph -> prod_ k e. Z B = X )