Description: Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zprodn0.1 | |- Z = ( ZZ>= ` M ) |
|
zprodn0.2 | |- ( ph -> M e. ZZ ) |
||
zprodn0.3 | |- ( ph -> X =/= 0 ) |
||
zprodn0.4 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
||
iprodn0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
||
iprodn0.6 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
||
Assertion | iprodn0 | |- ( ph -> prod_ k e. Z B = X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zprodn0.1 | |- Z = ( ZZ>= ` M ) |
|
2 | zprodn0.2 | |- ( ph -> M e. ZZ ) |
|
3 | zprodn0.3 | |- ( ph -> X =/= 0 ) |
|
4 | zprodn0.4 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
|
5 | iprodn0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
|
6 | iprodn0.6 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
|
7 | ssidd | |- ( ph -> Z C_ Z ) |
|
8 | iftrue | |- ( k e. Z -> if ( k e. Z , B , 1 ) = B ) |
|
9 | 8 | adantl | |- ( ( ph /\ k e. Z ) -> if ( k e. Z , B , 1 ) = B ) |
10 | 5 9 | eqtr4d | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. Z , B , 1 ) ) |
11 | 1 2 3 4 7 10 6 | zprodn0 | |- ( ph -> prod_ k e. Z B = X ) |