Step |
Hyp |
Ref |
Expression |
1 |
|
iprodcl.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iprodcl.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
iprodcl.3 |
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
4 |
|
iprodcl.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
5 |
|
iprodrecl.5 |
|- ( ( ph /\ k e. Z ) -> A e. RR ) |
6 |
5
|
recnd |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
7 |
1 2 3 4 6
|
iprodclim2 |
|- ( ph -> seq M ( x. , F ) ~~> prod_ k e. Z A ) |
8 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
9 |
|
remulcl |
|- ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR ) |
10 |
9
|
adantl |
|- ( ( ph /\ ( k e. RR /\ x e. RR ) ) -> ( k x. x ) e. RR ) |
11 |
1 2 8 10
|
seqf |
|- ( ph -> seq M ( x. , F ) : Z --> RR ) |
12 |
11
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( x. , F ) ` j ) e. RR ) |
13 |
1 2 7 12
|
climrecl |
|- ( ph -> prod_ k e. Z A e. RR ) |