Metamath Proof Explorer


Theorem iprodrecl

Description: The product of a non-trivially converging infinite real sequence is a real number. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodcl.1
|- Z = ( ZZ>= ` M )
iprodcl.2
|- ( ph -> M e. ZZ )
iprodcl.3
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
iprodcl.4
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
iprodrecl.5
|- ( ( ph /\ k e. Z ) -> A e. RR )
Assertion iprodrecl
|- ( ph -> prod_ k e. Z A e. RR )

Proof

Step Hyp Ref Expression
1 iprodcl.1
 |-  Z = ( ZZ>= ` M )
2 iprodcl.2
 |-  ( ph -> M e. ZZ )
3 iprodcl.3
 |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
4 iprodcl.4
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
5 iprodrecl.5
 |-  ( ( ph /\ k e. Z ) -> A e. RR )
6 5 recnd
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
7 1 2 3 4 6 iprodclim2
 |-  ( ph -> seq M ( x. , F ) ~~> prod_ k e. Z A )
8 4 5 eqeltrd
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
9 remulcl
 |-  ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR )
10 9 adantl
 |-  ( ( ph /\ ( k e. RR /\ x e. RR ) ) -> ( k x. x ) e. RR )
11 1 2 8 10 seqf
 |-  ( ph -> seq M ( x. , F ) : Z --> RR )
12 11 ffvelrnda
 |-  ( ( ph /\ j e. Z ) -> ( seq M ( x. , F ) ` j ) e. RR )
13 1 2 7 12 climrecl
 |-  ( ph -> prod_ k e. Z A e. RR )