Description: The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ipspart.a | |- A = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } ) |
|
Assertion | ipssca | |- ( S e. V -> S = ( Scalar ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipspart.a | |- A = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } ) |
|
2 | 1 | ipsstr | |- A Struct <. 1 , 8 >. |
3 | scaid | |- Scalar = Slot ( Scalar ` ndx ) |
|
4 | snsstp1 | |- { <. ( Scalar ` ndx ) , S >. } C_ { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } |
|
5 | ssun2 | |- { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } ) |
|
6 | 5 1 | sseqtrri | |- { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } C_ A |
7 | 4 6 | sstri | |- { <. ( Scalar ` ndx ) , S >. } C_ A |
8 | 2 3 7 | strfv | |- ( S e. V -> S = ( Scalar ` A ) ) |