Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
4 |
|
ipsubdir.m |
|- .- = ( -g ` W ) |
5 |
|
ipsubdir.s |
|- S = ( -g ` F ) |
6 |
|
simpl |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. PreHil ) |
7 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
8 |
7
|
adantr |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. LMod ) |
9 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
10 |
8 9
|
syl |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. Grp ) |
11 |
|
simpr1 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) |
12 |
|
simpr2 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) |
13 |
3 4
|
grpsubcl |
|- ( ( W e. Grp /\ A e. V /\ B e. V ) -> ( A .- B ) e. V ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A .- B ) e. V ) |
15 |
|
simpr3 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) |
16 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
17 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
18 |
1 2 3 16 17
|
ipdir |
|- ( ( W e. PreHil /\ ( ( A .- B ) e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A .- B ) ( +g ` W ) B ) ., C ) = ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) ) |
19 |
6 14 12 15 18
|
syl13anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A .- B ) ( +g ` W ) B ) ., C ) = ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) ) |
20 |
3 16 4
|
grpnpcan |
|- ( ( W e. Grp /\ A e. V /\ B e. V ) -> ( ( A .- B ) ( +g ` W ) B ) = A ) |
21 |
10 11 12 20
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ( +g ` W ) B ) = A ) |
22 |
21
|
oveq1d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A .- B ) ( +g ` W ) B ) ., C ) = ( A ., C ) ) |
23 |
19 22
|
eqtr3d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) = ( A ., C ) ) |
24 |
1
|
lmodfgrp |
|- ( W e. LMod -> F e. Grp ) |
25 |
8 24
|
syl |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> F e. Grp ) |
26 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
27 |
1 2 3 26
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` F ) ) |
28 |
6 11 15 27
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., C ) e. ( Base ` F ) ) |
29 |
1 2 3 26
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. ( Base ` F ) ) |
30 |
6 12 15 29
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( B ., C ) e. ( Base ` F ) ) |
31 |
1 2 3 26
|
ipcl |
|- ( ( W e. PreHil /\ ( A .- B ) e. V /\ C e. V ) -> ( ( A .- B ) ., C ) e. ( Base ` F ) ) |
32 |
6 14 15 31
|
syl3anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ., C ) e. ( Base ` F ) ) |
33 |
26 17 5
|
grpsubadd |
|- ( ( F e. Grp /\ ( ( A ., C ) e. ( Base ` F ) /\ ( B ., C ) e. ( Base ` F ) /\ ( ( A .- B ) ., C ) e. ( Base ` F ) ) ) -> ( ( ( A ., C ) S ( B ., C ) ) = ( ( A .- B ) ., C ) <-> ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) = ( A ., C ) ) ) |
34 |
25 28 30 32 33
|
syl13anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A ., C ) S ( B ., C ) ) = ( ( A .- B ) ., C ) <-> ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) = ( A ., C ) ) ) |
35 |
23 34
|
mpbird |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A ., C ) S ( B ., C ) ) = ( ( A .- B ) ., C ) ) |
36 |
35
|
eqcomd |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ., C ) = ( ( A ., C ) S ( B ., C ) ) ) |