| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dipfval.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | dipfval.2 |  |-  G = ( +v ` U ) | 
						
							| 3 |  | dipfval.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 4 |  | dipfval.6 |  |-  N = ( normCV ` U ) | 
						
							| 5 |  | dipfval.7 |  |-  P = ( .iOLD ` U ) | 
						
							| 6 | 1 3 | nvsid |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( A G ( 1 S B ) ) = ( A G B ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( N ` ( A G ( 1 S B ) ) ) = ( N ` ( A G B ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) | 
						
							| 10 | 9 | 3adant2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) | 
						
							| 11 |  | ax-1cn |  |-  1 e. CC | 
						
							| 12 | 1 2 3 4 5 | ipval2lem2 |  |-  ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ 1 e. CC ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) e. RR ) | 
						
							| 13 | 11 12 | mpan2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) e. RR ) | 
						
							| 14 | 10 13 | eqeltrrd |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) ^ 2 ) e. RR ) |