Metamath Proof Explorer


Theorem ipval2lem4

Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1
|- X = ( BaseSet ` U )
dipfval.2
|- G = ( +v ` U )
dipfval.4
|- S = ( .sOLD ` U )
dipfval.6
|- N = ( normCV ` U )
dipfval.7
|- P = ( .iOLD ` U )
Assertion ipval2lem4
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> ( ( N ` ( A G ( C S B ) ) ) ^ 2 ) e. CC )

Proof

Step Hyp Ref Expression
1 dipfval.1
 |-  X = ( BaseSet ` U )
2 dipfval.2
 |-  G = ( +v ` U )
3 dipfval.4
 |-  S = ( .sOLD ` U )
4 dipfval.6
 |-  N = ( normCV ` U )
5 dipfval.7
 |-  P = ( .iOLD ` U )
6 1 2 3 4 5 ipval2lem2
 |-  ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> ( ( N ` ( A G ( C S B ) ) ) ^ 2 ) e. RR )
7 6 recnd
 |-  ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> ( ( N ` ( A G ( C S B ) ) ) ^ 2 ) e. CC )