Step |
Hyp |
Ref |
Expression |
1 |
|
dipfval.1 |
|- X = ( BaseSet ` U ) |
2 |
|
dipfval.2 |
|- G = ( +v ` U ) |
3 |
|
dipfval.4 |
|- S = ( .sOLD ` U ) |
4 |
|
dipfval.6 |
|- N = ( normCV ` U ) |
5 |
|
dipfval.7 |
|- P = ( .iOLD ` U ) |
6 |
|
ipval3.3 |
|- M = ( -v ` U ) |
7 |
1 2 3 4 5
|
ipval2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
8 |
1 2 3 6
|
nvmval |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( A G ( -u 1 S B ) ) ) |
9 |
8
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M B ) ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
10 |
9
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A M B ) ) ^ 2 ) = ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) |
11 |
10
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A M B ) ) ^ 2 ) ) = ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
12 |
|
ax-icn |
|- _i e. CC |
13 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ _i e. CC /\ B e. X ) -> ( _i S B ) e. X ) |
14 |
12 13
|
mp3an2 |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( _i S B ) e. X ) |
15 |
14
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i S B ) e. X ) |
16 |
1 2 3 6
|
nvmval |
|- ( ( U e. NrmCVec /\ A e. X /\ ( _i S B ) e. X ) -> ( A M ( _i S B ) ) = ( A G ( -u 1 S ( _i S B ) ) ) ) |
17 |
15 16
|
syld3an3 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M ( _i S B ) ) = ( A G ( -u 1 S ( _i S B ) ) ) ) |
18 |
|
neg1cn |
|- -u 1 e. CC |
19 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ _i e. CC /\ B e. X ) ) -> ( ( -u 1 x. _i ) S B ) = ( -u 1 S ( _i S B ) ) ) |
20 |
18 19
|
mp3anr1 |
|- ( ( U e. NrmCVec /\ ( _i e. CC /\ B e. X ) ) -> ( ( -u 1 x. _i ) S B ) = ( -u 1 S ( _i S B ) ) ) |
21 |
12 20
|
mpanr1 |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( ( -u 1 x. _i ) S B ) = ( -u 1 S ( _i S B ) ) ) |
22 |
12
|
mulm1i |
|- ( -u 1 x. _i ) = -u _i |
23 |
22
|
oveq1i |
|- ( ( -u 1 x. _i ) S B ) = ( -u _i S B ) |
24 |
21 23
|
eqtr3di |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( -u 1 S ( _i S B ) ) = ( -u _i S B ) ) |
25 |
24
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 S ( _i S B ) ) = ( -u _i S B ) ) |
26 |
25
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( -u 1 S ( _i S B ) ) ) = ( A G ( -u _i S B ) ) ) |
27 |
17 26
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M ( _i S B ) ) = ( A G ( -u _i S B ) ) ) |
28 |
27
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M ( _i S B ) ) ) = ( N ` ( A G ( -u _i S B ) ) ) ) |
29 |
28
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) |
30 |
29
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) = ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) |
31 |
30
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
32 |
11 31
|
oveq12d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A M B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
33 |
32
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A M B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
34 |
7 33
|
eqtr4d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A M B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |