Description: The reciprocal of _i . (Contributed by NM, 11-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | irec | |- ( 1 / _i ) = -u _i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn | |- _i e. CC |
|
2 | 1 1 | mulneg2i | |- ( _i x. -u _i ) = -u ( _i x. _i ) |
3 | ixi | |- ( _i x. _i ) = -u 1 |
|
4 | ax-1cn | |- 1 e. CC |
|
5 | 1 1 | mulcli | |- ( _i x. _i ) e. CC |
6 | 4 5 | negcon2i | |- ( 1 = -u ( _i x. _i ) <-> ( _i x. _i ) = -u 1 ) |
7 | 3 6 | mpbir | |- 1 = -u ( _i x. _i ) |
8 | 2 7 | eqtr4i | |- ( _i x. -u _i ) = 1 |
9 | negicn | |- -u _i e. CC |
|
10 | ine0 | |- _i =/= 0 |
|
11 | 4 1 9 10 | divmuli | |- ( ( 1 / _i ) = -u _i <-> ( _i x. -u _i ) = 1 ) |
12 | 8 11 | mpbir | |- ( 1 / _i ) = -u _i |