| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irinitoringc.u |  |-  ( ph -> U e. V ) | 
						
							| 2 |  | irinitoringc.z |  |-  ( ph -> ZZring e. U ) | 
						
							| 3 |  | irinitoringc.c |  |-  C = ( RingCat ` U ) | 
						
							| 4 |  | zex |  |-  ZZ e. _V | 
						
							| 5 | 4 | mptex |  |-  ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) e. _V | 
						
							| 6 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 7 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 8 | 3 6 1 7 | ringchomfval |  |-  ( ph -> ( Hom ` C ) = ( RingHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( Hom ` C ) = ( RingHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) | 
						
							| 10 | 9 | oveqd |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ZZring ( Hom ` C ) r ) = ( ZZring ( RingHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) r ) ) | 
						
							| 11 |  | id |  |-  ( ZZring e. U -> ZZring e. U ) | 
						
							| 12 |  | zringring |  |-  ZZring e. Ring | 
						
							| 13 | 12 | a1i |  |-  ( ZZring e. U -> ZZring e. Ring ) | 
						
							| 14 | 11 13 | elind |  |-  ( ZZring e. U -> ZZring e. ( U i^i Ring ) ) | 
						
							| 15 | 2 14 | syl |  |-  ( ph -> ZZring e. ( U i^i Ring ) ) | 
						
							| 16 | 3 6 1 | ringcbas |  |-  ( ph -> ( Base ` C ) = ( U i^i Ring ) ) | 
						
							| 17 | 15 16 | eleqtrrd |  |-  ( ph -> ZZring e. ( Base ` C ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ZZring e. ( Base ` C ) ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) ) | 
						
							| 20 | 18 19 | ovresd |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ZZring ( RingHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) r ) = ( ZZring RingHom r ) ) | 
						
							| 21 | 16 | eleq2d |  |-  ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Ring ) ) ) | 
						
							| 22 |  | elin |  |-  ( r e. ( U i^i Ring ) <-> ( r e. U /\ r e. Ring ) ) | 
						
							| 23 | 22 | simprbi |  |-  ( r e. ( U i^i Ring ) -> r e. Ring ) | 
						
							| 24 | 21 23 | biimtrdi |  |-  ( ph -> ( r e. ( Base ` C ) -> r e. Ring ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> r e. Ring ) | 
						
							| 26 |  | eqid |  |-  ( .g ` r ) = ( .g ` r ) | 
						
							| 27 |  | eqid |  |-  ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) = ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) | 
						
							| 28 |  | eqid |  |-  ( 1r ` r ) = ( 1r ` r ) | 
						
							| 29 | 26 27 28 | mulgrhm2 |  |-  ( r e. Ring -> ( ZZring RingHom r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) | 
						
							| 30 | 25 29 | syl |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ZZring RingHom r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) | 
						
							| 31 | 10 20 30 | 3eqtrd |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ZZring ( Hom ` C ) r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) | 
						
							| 32 |  | sneq |  |-  ( f = ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) -> { f } = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) | 
						
							| 33 | 32 | eqeq2d |  |-  ( f = ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) -> ( ( ZZring ( Hom ` C ) r ) = { f } <-> ( ZZring ( Hom ` C ) r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) ) | 
						
							| 34 | 33 | spcegv |  |-  ( ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) e. _V -> ( ( ZZring ( Hom ` C ) r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } -> E. f ( ZZring ( Hom ` C ) r ) = { f } ) ) | 
						
							| 35 | 5 31 34 | mpsyl |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> E. f ( ZZring ( Hom ` C ) r ) = { f } ) | 
						
							| 36 |  | eusn |  |-  ( E! f f e. ( ZZring ( Hom ` C ) r ) <-> E. f ( ZZring ( Hom ` C ) r ) = { f } ) | 
						
							| 37 | 35 36 | sylibr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> E! f f e. ( ZZring ( Hom ` C ) r ) ) | 
						
							| 38 | 37 | ralrimiva |  |-  ( ph -> A. r e. ( Base ` C ) E! f f e. ( ZZring ( Hom ` C ) r ) ) | 
						
							| 39 | 3 | ringccat |  |-  ( U e. V -> C e. Cat ) | 
						
							| 40 | 1 39 | syl |  |-  ( ph -> C e. Cat ) | 
						
							| 41 | 12 | a1i |  |-  ( ph -> ZZring e. Ring ) | 
						
							| 42 | 2 41 | elind |  |-  ( ph -> ZZring e. ( U i^i Ring ) ) | 
						
							| 43 | 42 16 | eleqtrrd |  |-  ( ph -> ZZring e. ( Base ` C ) ) | 
						
							| 44 | 6 7 40 43 | isinito |  |-  ( ph -> ( ZZring e. ( InitO ` C ) <-> A. r e. ( Base ` C ) E! f f e. ( ZZring ( Hom ` C ) r ) ) ) | 
						
							| 45 | 38 44 | mpbird |  |-  ( ph -> ZZring e. ( InitO ` C ) ) |