Step |
Hyp |
Ref |
Expression |
1 |
|
fzssuz |
|- ( 0 ... B ) C_ ( ZZ>= ` 0 ) |
2 |
|
uzssz |
|- ( ZZ>= ` 0 ) C_ ZZ |
3 |
|
zssre |
|- ZZ C_ RR |
4 |
2 3
|
sstri |
|- ( ZZ>= ` 0 ) C_ RR |
5 |
1 4
|
sstri |
|- ( 0 ... B ) C_ RR |
6 |
5
|
a1i |
|- ( ( A e. RR+ /\ B e. NN ) -> ( 0 ... B ) C_ RR ) |
7 |
|
ovexd |
|- ( ( A e. RR+ /\ B e. NN ) -> ( 0 ... ( B - 1 ) ) e. _V ) |
8 |
|
nnm1nn0 |
|- ( B e. NN -> ( B - 1 ) e. NN0 ) |
9 |
8
|
adantl |
|- ( ( A e. RR+ /\ B e. NN ) -> ( B - 1 ) e. NN0 ) |
10 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
11 |
9 10
|
eleqtrdi |
|- ( ( A e. RR+ /\ B e. NN ) -> ( B - 1 ) e. ( ZZ>= ` 0 ) ) |
12 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
13 |
12
|
adantl |
|- ( ( A e. RR+ /\ B e. NN ) -> B e. ZZ ) |
14 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
15 |
14
|
adantl |
|- ( ( A e. RR+ /\ B e. NN ) -> B e. RR ) |
16 |
15
|
ltm1d |
|- ( ( A e. RR+ /\ B e. NN ) -> ( B - 1 ) < B ) |
17 |
|
fzsdom2 |
|- ( ( ( ( B - 1 ) e. ( ZZ>= ` 0 ) /\ B e. ZZ ) /\ ( B - 1 ) < B ) -> ( 0 ... ( B - 1 ) ) ~< ( 0 ... B ) ) |
18 |
11 13 16 17
|
syl21anc |
|- ( ( A e. RR+ /\ B e. NN ) -> ( 0 ... ( B - 1 ) ) ~< ( 0 ... B ) ) |
19 |
14
|
ad2antlr |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> B e. RR ) |
20 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
21 |
20
|
ad2antrr |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> A e. RR ) |
22 |
|
elfzelz |
|- ( a e. ( 0 ... B ) -> a e. ZZ ) |
23 |
22
|
zred |
|- ( a e. ( 0 ... B ) -> a e. RR ) |
24 |
23
|
adantl |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> a e. RR ) |
25 |
21 24
|
remulcld |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( A x. a ) e. RR ) |
26 |
|
1rp |
|- 1 e. RR+ |
27 |
|
modcl |
|- ( ( ( A x. a ) e. RR /\ 1 e. RR+ ) -> ( ( A x. a ) mod 1 ) e. RR ) |
28 |
25 26 27
|
sylancl |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( ( A x. a ) mod 1 ) e. RR ) |
29 |
19 28
|
remulcld |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( B x. ( ( A x. a ) mod 1 ) ) e. RR ) |
30 |
29
|
flcld |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) e. ZZ ) |
31 |
19
|
recnd |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> B e. CC ) |
32 |
31
|
mul01d |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( B x. 0 ) = 0 ) |
33 |
|
modge0 |
|- ( ( ( A x. a ) e. RR /\ 1 e. RR+ ) -> 0 <_ ( ( A x. a ) mod 1 ) ) |
34 |
25 26 33
|
sylancl |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> 0 <_ ( ( A x. a ) mod 1 ) ) |
35 |
|
0red |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> 0 e. RR ) |
36 |
|
nngt0 |
|- ( B e. NN -> 0 < B ) |
37 |
36
|
ad2antlr |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> 0 < B ) |
38 |
|
lemul2 |
|- ( ( 0 e. RR /\ ( ( A x. a ) mod 1 ) e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( 0 <_ ( ( A x. a ) mod 1 ) <-> ( B x. 0 ) <_ ( B x. ( ( A x. a ) mod 1 ) ) ) ) |
39 |
35 28 19 37 38
|
syl112anc |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( 0 <_ ( ( A x. a ) mod 1 ) <-> ( B x. 0 ) <_ ( B x. ( ( A x. a ) mod 1 ) ) ) ) |
40 |
34 39
|
mpbid |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( B x. 0 ) <_ ( B x. ( ( A x. a ) mod 1 ) ) ) |
41 |
32 40
|
eqbrtrrd |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> 0 <_ ( B x. ( ( A x. a ) mod 1 ) ) ) |
42 |
35 29
|
lenltd |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( 0 <_ ( B x. ( ( A x. a ) mod 1 ) ) <-> -. ( B x. ( ( A x. a ) mod 1 ) ) < 0 ) ) |
43 |
41 42
|
mpbid |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> -. ( B x. ( ( A x. a ) mod 1 ) ) < 0 ) |
44 |
|
0z |
|- 0 e. ZZ |
45 |
|
fllt |
|- ( ( ( B x. ( ( A x. a ) mod 1 ) ) e. RR /\ 0 e. ZZ ) -> ( ( B x. ( ( A x. a ) mod 1 ) ) < 0 <-> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) < 0 ) ) |
46 |
29 44 45
|
sylancl |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( ( B x. ( ( A x. a ) mod 1 ) ) < 0 <-> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) < 0 ) ) |
47 |
43 46
|
mtbid |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> -. ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) < 0 ) |
48 |
30
|
zred |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) e. RR ) |
49 |
35 48
|
lenltd |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( 0 <_ ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) <-> -. ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) < 0 ) ) |
50 |
47 49
|
mpbird |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> 0 <_ ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) ) |
51 |
|
elnn0z |
|- ( ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) e. NN0 <-> ( ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) ) ) |
52 |
30 50 51
|
sylanbrc |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) e. NN0 ) |
53 |
8
|
ad2antlr |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( B - 1 ) e. NN0 ) |
54 |
|
flle |
|- ( ( B x. ( ( A x. a ) mod 1 ) ) e. RR -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) <_ ( B x. ( ( A x. a ) mod 1 ) ) ) |
55 |
29 54
|
syl |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) <_ ( B x. ( ( A x. a ) mod 1 ) ) ) |
56 |
|
modlt |
|- ( ( ( A x. a ) e. RR /\ 1 e. RR+ ) -> ( ( A x. a ) mod 1 ) < 1 ) |
57 |
25 26 56
|
sylancl |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( ( A x. a ) mod 1 ) < 1 ) |
58 |
|
1red |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> 1 e. RR ) |
59 |
|
ltmul2 |
|- ( ( ( ( A x. a ) mod 1 ) e. RR /\ 1 e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( ( A x. a ) mod 1 ) < 1 <-> ( B x. ( ( A x. a ) mod 1 ) ) < ( B x. 1 ) ) ) |
60 |
28 58 19 37 59
|
syl112anc |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( ( ( A x. a ) mod 1 ) < 1 <-> ( B x. ( ( A x. a ) mod 1 ) ) < ( B x. 1 ) ) ) |
61 |
57 60
|
mpbid |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( B x. ( ( A x. a ) mod 1 ) ) < ( B x. 1 ) ) |
62 |
31
|
mulid1d |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( B x. 1 ) = B ) |
63 |
61 62
|
breqtrd |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( B x. ( ( A x. a ) mod 1 ) ) < B ) |
64 |
48 29 19 55 63
|
lelttrd |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) < B ) |
65 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
66 |
|
ax-1cn |
|- 1 e. CC |
67 |
|
npcan |
|- ( ( B e. CC /\ 1 e. CC ) -> ( ( B - 1 ) + 1 ) = B ) |
68 |
65 66 67
|
sylancl |
|- ( B e. NN -> ( ( B - 1 ) + 1 ) = B ) |
69 |
68
|
ad2antlr |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( ( B - 1 ) + 1 ) = B ) |
70 |
64 69
|
breqtrrd |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) < ( ( B - 1 ) + 1 ) ) |
71 |
12
|
ad2antlr |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> B e. ZZ ) |
72 |
|
1z |
|- 1 e. ZZ |
73 |
|
zsubcl |
|- ( ( B e. ZZ /\ 1 e. ZZ ) -> ( B - 1 ) e. ZZ ) |
74 |
71 72 73
|
sylancl |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( B - 1 ) e. ZZ ) |
75 |
|
zleltp1 |
|- ( ( ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) e. ZZ /\ ( B - 1 ) e. ZZ ) -> ( ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) <_ ( B - 1 ) <-> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) < ( ( B - 1 ) + 1 ) ) ) |
76 |
30 74 75
|
syl2anc |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) <_ ( B - 1 ) <-> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) < ( ( B - 1 ) + 1 ) ) ) |
77 |
70 76
|
mpbird |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) <_ ( B - 1 ) ) |
78 |
|
elfz2nn0 |
|- ( ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) e. ( 0 ... ( B - 1 ) ) <-> ( ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) e. NN0 /\ ( B - 1 ) e. NN0 /\ ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) <_ ( B - 1 ) ) ) |
79 |
52 53 77 78
|
syl3anbrc |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ a e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) e. ( 0 ... ( B - 1 ) ) ) |
80 |
|
oveq2 |
|- ( a = x -> ( A x. a ) = ( A x. x ) ) |
81 |
80
|
oveq1d |
|- ( a = x -> ( ( A x. a ) mod 1 ) = ( ( A x. x ) mod 1 ) ) |
82 |
81
|
oveq2d |
|- ( a = x -> ( B x. ( ( A x. a ) mod 1 ) ) = ( B x. ( ( A x. x ) mod 1 ) ) ) |
83 |
82
|
fveq2d |
|- ( a = x -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) ) |
84 |
|
oveq2 |
|- ( a = y -> ( A x. a ) = ( A x. y ) ) |
85 |
84
|
oveq1d |
|- ( a = y -> ( ( A x. a ) mod 1 ) = ( ( A x. y ) mod 1 ) ) |
86 |
85
|
oveq2d |
|- ( a = y -> ( B x. ( ( A x. a ) mod 1 ) ) = ( B x. ( ( A x. y ) mod 1 ) ) ) |
87 |
86
|
fveq2d |
|- ( a = y -> ( |_ ` ( B x. ( ( A x. a ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) |
88 |
6 7 18 79 83 87
|
fphpdo |
|- ( ( A e. RR+ /\ B e. NN ) -> E. x e. ( 0 ... B ) E. y e. ( 0 ... B ) ( x < y /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) ) |